https://www.avient.com/sites/default/files/2023-08/Maxxam BIO Bio-Based Polyolefin Formulations Product Bulletin.pdf
KEY CHARACTERISTICS
Formulated with bio-based resin and/or
10–50% filler from renewable plant sources,
Maxxam BIO formulations:
• Reduce product carbon footprint
• Achieve equivalent performance to standard
polyolefin formulations
• Provide good stiffness, durability, impact
resistance and UV stability
• Deliver good surface finish and are easy to color
• Enable customized performance characteristics
depending on application need
• Offer food contact compliance
MARKETS AND APPLICATIONS
Maxxam BIO formulations are suitable for use across
many industries and applications where traditional
polyolefin materials are used, including:
• Transportation Interior Applications -
Decorative profiles, trunk side liners, pillars,
T-cup
• Industrial - Structural parts, furniture
• Consumer - Household goods, personal care
items, packaging, office supplies, food contact
applications
• Electrical and Electronic – Housings, buttons,
junction boxes
SUSTAINABILITY BENEFITS
• Formulated with bio-based resin and/or
10–50% natural filler
• Utilize natural filler from renewable plant
sources including olive seed based powder
and cellulose fiber
• Offer a lower product carbon footprint
compared to traditional petroleum-based
feedstock
• Can be recycled at end of life
PRODUCT BULLETIN
CHARACTERISTICS UNITS
Maxxam BIO
MX5200-5036
Natural FD
Maxxam BIO
MX5200-5030
Natural FD
Maxxam BIO
MX5200-5030
Natural FD X1
Maxxam BIO
MX5200-5001
RS HS Natural
Maxxam BIO
MX5200-5033
RS HS Natural
Maxxam BIO
MX5200-5034
RS HS Natural
Maxxam BIO
MX5200-5035
RS HS Natural
Filler/Reinforcement Unfilled Unfilled Unfilled
30%
Glass Fiber
10%
Mineral
20%
Mineral
30%
Mineral
Density
(ISO 1183)
g/cm 0.90 0.90 0.90 1.12 0.96 1.03 1.12
Tensile Modulus
(ISO 527-1) @ 23°C
MPa 1500 1000 1000 6400 1350 1650 2100
Tensile Stress
(ISO 527-2) @ 23°C
MPa 27.0 20.0 20.0 75.0 13.0 14.0 15.0
Tensile Strain
at Break
(ISO 527-2) @ 23°C
% 5 50 50 3.0 50 37 18
Charpy Notched
(ISO 179)
kJ/m 5 20 25 10 12 10 10
CHARACTERISTICS UNITS
Maxxam BIO
MX5200-5023
RS HS HI
Natural 70
Maxxam BIO
MX5200-5025
RS HS
Natural 70
Maxxam BIO
MX5200-5004
RS HS
Natural 70
Maxxam BIO
MX5200-5003
RS
Natural 70
Maxxam BIO
MX5200-5009
RS HS Natural
70
Maxxam BIO
MX5200-5024
RS HS
Natural 70
Maxxam BIO
MX5200-5022
RS HS
Natural 70
Filler/Reinforcement
15%
Olive Seed
Based
25%
Olive Seed
Based
30%
Olive Seed
Based/
10%
Mineral
35%
Olive Seed
Based/
5%
Mineral
15%
Olive Seed
Based/
17%
Glass Fiber/
Mineral
20%
Olive Seed
Based/
20% Glass/
Mineral
10%
Olive Seed
Based/
20%
Mineral
Density
(ISO 1183)
g/ccm 1.00 1.15 1.10 1.07 1.09 1.25 1.10
Tensile Modulus
(ISO 527-1) @ 23°C
MPa 1750 2000 2700 2500 3800 3500 4100
Tensile Stress
at Break
(ISO 527-2) @ 23°C
MPa 21.0 20.0 30.0 20.0 40.0 35.0 42.0
Tensile Strain
at Break
(ISO 527-2) @ 23°C
% 24 5 3 5 3 4 2
Notched Izod
(ISO 180)
kJ/m 15 7 3 2 5 15 7
MAXXAM BIO POLYOLEFINS – BIO-BASED RESIN – TECHNICAL PERFORMANCE
MAXXAM BIO POLYOLEFINS – OLIVE SEED BASED FILLER – TECHNICAL PERFORMANCE
CHARACTERISTICS UNITS
Maxxam BIO
MX5200-5029 NF HI
UV Black X1
Maxxam BIO
MX5200-5032 NFS
UV Natural
Maxxam BIO
MX5200-5020 NF/NFS
UV Natural X1
Maxxam BIO
MX5200-5016 NF
Natural
Filler/Reinforcement 10% Cellulose Fiber 20% Cellulose Fiber 30% Cellulose Fiber 40% Cellulose Fiber
Density
(ISO 1183)
g/ccm 0.95 1.00 1.02 1.07
Tensile Modulus
ISO 527-1) @ 23°C
MPa 1550 1750 2640 3600
Tensile Stress at Break
(ISO 527-2) @ 23°C
MPa 33 30 48 55
Tensile Strain at Break
(ISO 527-2) @ 23°C
% 8 12 9 4
Charpy Notched Impact
Strength (ISO 179/1eA)
kJ/m2 5 6 5 5
Charpy Unnotched Impact
Strength (ISO 179/1eU)
kJ/m2 33 49 38 30
MAXXAM BIO POLYOLEFINS – CELLULOSE FIBER FILLER – TECHNICAL PERFORMANCE
Copyright © 2023, Avient Corporation.
https://www.avient.com/products/fiber-line-engineered-fiber-solutions/fiber-line-performance-enhancing-processes/pultrusion-composite-fiber-rods
Dielectric properties (exception of carbon fiber)
https://www.avient.com/industries/transportation/aerospace/aerospace-rail-walls-liners-flooring
Carbonateds
https://www.avient.com/news/avient-announces-phoenix-location-serve-colorworks-design-technology-center
Light-weighting solutions that replace heavier traditional materials like metal, glass and wood, which can improve fuel efficiency in all modes of transportation and reduce carbon footprint
https://www.avient.com/investor-center/news/avient-expands-2030-sustainability-goals-and-highlights-esg-impact-latest-sustainability-report
Commits to operational carbon neutrality and 100% renewable energy by 2050
https://www.avient.com/investor-center/news/avient-announces-registration-details-2023-sustainability-day
Light-weighting solutions that replace heavier traditional materials like metal, glass and wood, which can improve fuel efficiency in all modes of transportation and reduce carbon footprint
https://www.avient.com/news/avient-expands-high-performance-materials-portfolio-edgetek-toughened-ppa
Light-weighting solutions that replace heavier traditional materials like metal, glass and wood, which can improve fuel efficiency in all modes of transportation and reduce carbon footprint
https://www.avient.com/industries/packaging/personal-care-packaging
Carbonateds
https://www.avient.com/news/avient-unveils-high-temperature-vibrant-colorants-healthcare-mdm-west-2022
Light-weighting solutions that replace heavier traditional materials like metal, glass and wood, which can improve fuel efficiency in all modes of transportation and reduce carbon footprint
https://www.avient.com/news/avient-launches-additional-resound-bio-based-tpes-formulated-renewable-plant-derived-content
Light-weighting solutions that replace heavier traditional materials like metal, glass and wood, which can improve fuel efficiency in all modes of transportation and reduce carbon footprint