https://www.avient.com/industries/packaging/beverage-packaging/carbonateds
Carbonateds
Carbonates Packaging
Carbonateds
https://www.avient.com/products/long-fiber-technology/complet-long-carbon-fiber
Long Carbon Fiber Reinforcement
Overall, the superior mechanical properties of long carbon fiber reinforced composites make them an ideal substitute for metals.
Long carbon fiber composites are the top choice for mass reduction.
https://www.avient.com/knowledge-base/article/carbon-fiber-composites
Carbon fiber reinforced polymers (CFRP), or carbon fiber composites, are made by combining carbon fiber with a resin, such as vinyl ester or epoxy, to create a composite material that has higher performance properties than the individual materials alone.
What is Carbon Fiber?
Carbon fiber, sometimes referred to as graphite fiber, is formed by bonding carbon atoms together to form a long chain.
https://www.avient.com/products/fiber-line-engineered-fiber-solutions/high-performance-synthetic-fibers/carbon-fiber
Carbon Fiber
Carbon Fiber Data
Carbon Fiber
https://www.avient.com/resource-center/services/product-carbon-footprint-pcf-calculator
Avient’s Product Carbon Footprint Calculator
Baseline the carbon footprint of Avient solutions
Product Carbon Footprint (PCF) Explained
https://www.avient.com/knowledge-base/case-study/reduce-carbon-footprint-replacing-traditional-materials?sust[]=1139
Home //
Reduce Carbon Footprint by Replacing Traditional Materials
Each year humans put more carbon dioxide into the atmosphere than natural processes can remove, amplifying Earth’s natural greenhouse effect.
The new materials also offer sustainability benefits over the product lifecycle through carbon footprint reductions compared to competitive materials—PK base resin production emits up to 61 percent less carbon dioxide (CO2) than nylon and POM.
https://www.avient.com/knowledge-base/case-study/reduce-carbon-footprint-replacing-traditional-materials?ind[]=21506
Home //
Reduce Carbon Footprint by Replacing Traditional Materials
Each year humans put more carbon dioxide into the atmosphere than natural processes can remove, amplifying Earth’s natural greenhouse effect.
The new materials also offer sustainability benefits over the product lifecycle through carbon footprint reductions compared to competitive materials—PK base resin production emits up to 61 percent less carbon dioxide (CO2) than nylon and POM.
https://www.avient.com/knowledge-base/case-study/reduce-carbon-footprint-replacing-traditional-materials?rtype[]=1124
Home //
Reduce Carbon Footprint by Replacing Traditional Materials
Each year humans put more carbon dioxide into the atmosphere than natural processes can remove, amplifying Earth’s natural greenhouse effect.
The new materials also offer sustainability benefits over the product lifecycle through carbon footprint reductions compared to competitive materials—PK base resin production emits up to 61 percent less carbon dioxide (CO2) than nylon and POM.
https://www.avient.com/knowledge-base/case-study/reduce-carbon-footprint-replacing-traditional-materials?ind[]=6597
Home //
Reduce Carbon Footprint by Replacing Traditional Materials
Each year humans put more carbon dioxide into the atmosphere than natural processes can remove, amplifying Earth’s natural greenhouse effect.
The new materials also offer sustainability benefits over the product lifecycle through carbon footprint reductions compared to competitive materials—PK base resin production emits up to 61 percent less carbon dioxide (CO2) than nylon and POM.
https://www.avient.com/knowledge-base/case-study/reduce-carbon-footprint-replacing-traditional-materials?pname[]=10734
Home //
Reduce Carbon Footprint by Replacing Traditional Materials
Each year humans put more carbon dioxide into the atmosphere than natural processes can remove, amplifying Earth’s natural greenhouse effect.
The new materials also offer sustainability benefits over the product lifecycle through carbon footprint reductions compared to competitive materials—PK base resin production emits up to 61 percent less carbon dioxide (CO2) than nylon and POM.