https://www.avient.com/knowledge-base/article/what-s-difference-fillers-reinforcements?ind[]=6598
Graphene is a flat, single layer of carbon atoms in sheet form that is significantly stronger than steel.3 It has a high surface area-to-volume ratio, high tensile strength (how much it can stretch before it breaks), and high electron mobility (the speed at which its electrons move when voltage is applied).4 Graphene is not a new material, but it recently became commercially available and is now being used as a polymer additive.
Boyson, et al., “Graphene: Sheets of Carbon-based Nanoparticles,” http://www.dummies.com/education/science/nanotechnology/graphene-sheets-of-carbon-based-nanoparticles/
5E.
Compounds at the high end of the resistivity scale shield against electromagnetic interference (EMI) or radio-frequency interference (RFI).1 Faster data transmission and broader electromagnetic frequencies are driving the need for better EMI/RFI protection for electronic devices.2
https://www.avient.com/knowledge-base/article/what-s-difference-fillers-reinforcements?ind[]=21506
Graphene is a flat, single layer of carbon atoms in sheet form that is significantly stronger than steel.3 It has a high surface area-to-volume ratio, high tensile strength (how much it can stretch before it breaks), and high electron mobility (the speed at which its electrons move when voltage is applied).4 Graphene is not a new material, but it recently became commercially available and is now being used as a polymer additive.
Boyson, et al., “Graphene: Sheets of Carbon-based Nanoparticles,” http://www.dummies.com/education/science/nanotechnology/graphene-sheets-of-carbon-based-nanoparticles/
5E.
Compounds at the high end of the resistivity scale shield against electromagnetic interference (EMI) or radio-frequency interference (RFI).1 Faster data transmission and broader electromagnetic frequencies are driving the need for better EMI/RFI protection for electronic devices.2
https://www.avient.com/knowledge-base/article/what-s-difference-fillers-reinforcements?ind[]=6599
Graphene is a flat, single layer of carbon atoms in sheet form that is significantly stronger than steel.3 It has a high surface area-to-volume ratio, high tensile strength (how much it can stretch before it breaks), and high electron mobility (the speed at which its electrons move when voltage is applied).4 Graphene is not a new material, but it recently became commercially available and is now being used as a polymer additive.
Boyson, et al., “Graphene: Sheets of Carbon-based Nanoparticles,” http://www.dummies.com/education/science/nanotechnology/graphene-sheets-of-carbon-based-nanoparticles/
5E.
Compounds at the high end of the resistivity scale shield against electromagnetic interference (EMI) or radio-frequency interference (RFI).1 Faster data transmission and broader electromagnetic frequencies are driving the need for better EMI/RFI protection for electronic devices.2
https://www.avient.com/knowledge-base/article/what-s-difference-fillers-reinforcements?ind[]=6601
Graphene is a flat, single layer of carbon atoms in sheet form that is significantly stronger than steel.3 It has a high surface area-to-volume ratio, high tensile strength (how much it can stretch before it breaks), and high electron mobility (the speed at which its electrons move when voltage is applied).4 Graphene is not a new material, but it recently became commercially available and is now being used as a polymer additive.
Boyson, et al., “Graphene: Sheets of Carbon-based Nanoparticles,” http://www.dummies.com/education/science/nanotechnology/graphene-sheets-of-carbon-based-nanoparticles/
5E.
Compounds at the high end of the resistivity scale shield against electromagnetic interference (EMI) or radio-frequency interference (RFI).1 Faster data transmission and broader electromagnetic frequencies are driving the need for better EMI/RFI protection for electronic devices.2
https://www.avient.com/knowledge-base/article/what-s-difference-fillers-reinforcements?ind[]=21509
Graphene is a flat, single layer of carbon atoms in sheet form that is significantly stronger than steel.3 It has a high surface area-to-volume ratio, high tensile strength (how much it can stretch before it breaks), and high electron mobility (the speed at which its electrons move when voltage is applied).4 Graphene is not a new material, but it recently became commercially available and is now being used as a polymer additive.
Boyson, et al., “Graphene: Sheets of Carbon-based Nanoparticles,” http://www.dummies.com/education/science/nanotechnology/graphene-sheets-of-carbon-based-nanoparticles/
5E.
Compounds at the high end of the resistivity scale shield against electromagnetic interference (EMI) or radio-frequency interference (RFI).1 Faster data transmission and broader electromagnetic frequencies are driving the need for better EMI/RFI protection for electronic devices.2
https://www.avient.com/knowledge-base/article/what-s-difference-fillers-reinforcements?rtype[]=1164
Graphene is a flat, single layer of carbon atoms in sheet form that is significantly stronger than steel.3 It has a high surface area-to-volume ratio, high tensile strength (how much it can stretch before it breaks), and high electron mobility (the speed at which its electrons move when voltage is applied).4 Graphene is not a new material, but it recently became commercially available and is now being used as a polymer additive.
Boyson, et al., “Graphene: Sheets of Carbon-based Nanoparticles,” http://www.dummies.com/education/science/nanotechnology/graphene-sheets-of-carbon-based-nanoparticles/
5E.
Compounds at the high end of the resistivity scale shield against electromagnetic interference (EMI) or radio-frequency interference (RFI).1 Faster data transmission and broader electromagnetic frequencies are driving the need for better EMI/RFI protection for electronic devices.2
https://www.avient.com/industries/healthcare/drug-delivery-systems/auto-injectors-and-drug-delivery-pens
We also navigate the complex regulatory landscape, helping you meet the latest safety and compliance standards.
Avient's TPEs and engineered materials for auto-injector pens offer excellent chemical and impact resistance, good self-lubrication functions, durability to extend product life, and compliance with biocompatibility and food-contact safety regulations.
https://www.avient.com/investor-center/news/polyone-completes-sale-performance-products-and-solutions
The company noted that proceeds from the sale will be used to strengthen its balance sheet and fund future growth initiatives, including investing in sustainable solutions and specialty acquisitions.
https://www.avient.com/industries/packaging/food-packaging/food-packaging-dairy
Thermoform sheet for Form-Fill-Seal (FFS) dairy applications
https://www.avient.com/news/polyone-features-total-portfolio-healthcare-polymers-and-colorants-mdm-west-2017
WithStand™ Antimicrobial Technology:
• Additive that helps hospitals in non-acute care settings where minor lapses in cleaning protocol can lead to medical device performance problems
• Proven performance in engineered medical grade polymers with efficacy against primary known antibiotic-resistant organisms
OnCap™ Lasermarking Additive:
• Enables permanent alphanumeric character, graphic or barcode information for identification that does not fade over time for Unique Device Identification (UDI)
• Provides consistent and efficient marking without altering, damaging or changing electrical or mechanical properties in sensitive medical devices
OnColor™ HC and HC Plus Colorants:
• Regulatory compliant and biocompatible solid colorants
• Enable confidence that brand color choice will perform as expected for regulatory requirements, performance, and conditions of use
Royalite™ Fire-Rated ABS Sheet:
• Helps meet stringent flame rating requirements while creating thermoformed housings and components
• Aesthetically appealing and easily machined and finished