https://www.avient.com/sites/default/files/2024-12/2024 Avient Executive Bios_Jamie Beggs.pdf
a diversified holding company whose businesses served many industries including energy, real estate and private investments.
She serves as a member of the Board of Directors of International Paper (NYSE: IP) and holds a CPA certificate from the state of Texas.
https://www.avient.com/sites/default/files/lisakunkle_0.pdf
She holds a Juris Doctor degree from the University of Toledo, where she was a member of the Order of the Coif and the Moot Court Board.
She also holds a Bachelor of Science degree in business administration from Miami University, where she graduated with honors.
https://www.avient.com/sites/default/files/2020-09/stat-tech-tri-fold-processing-guide.pdf
Base Resin PC PC/PSU PES PEI PP ABS PEEK PA Barrel Temperatures* °F (°C) Rear Zone 530–560 (277–293) 550–575 (288–302) 660–700 (349–371) 675–725 (357–385) 390–420 (199–216) 425–460 (219–238) 680–730 (360–388) 430–500 (221–260) Center Zone 515–560 (269–288) 540–565 (282–296) 650–690 (343–366) 655–710 (352–377) 380–405 (193–207) 415–450 (213–232) 670–710 (354–377) 420–490 (216–254) Front Zone 510–525 (266–274) 530–555 (277–291) 640–680 (338–360) 655–700 (346–371) 370–395 (188–202) 405–440 (207–227) 650–690 (343–366) 410–480 (210–249) Nozzle 520–535 (271–280) 540–565 (282–296) 650–690 (343–366) 665–710 (352–377) 380–400 (193–204) 415–450 (213–232) 660–700 (349–371) 420–490 (216–254) Melt Temperature 525–560 (274–293) 530–580 (277–304) 650–700 (343–371) 660–730 (349–388) 375–395 (191–202) 410–460 (210–238) 650–730 (343–388) 420–500 (216–260) Mold Temperature 175–250 (80–121) 160–220 (71–104) 280–350 (138–177) 275–350 (135–177) 100–135 (38–57) 150–180 (66–82) 300–425 (149–219) 160–230 (71–110) Pack & Hold Pressure 50%–75% of Injection Pressure Injection Velocity in/s 0.5–2.0 Back Pressure psi 50 Screw Speed rpm 40–70 40–70 40–70 40–70 40–70 40–70 40–70 40–70** Drying Parameters °F (°C) 6 hrs @ 250 (121) 4 hrs @ 250 (121) 4 hrs @ 275 (135) 4 hrs @ 250 (121) 3 hrs @ 300 (150) 2 hrs @ 200 (93) 3 hrs @ 275 (135) 4 hrs @ 180 (82) Cushion in 0.125–0.250 Screw Compression Ratio 2.0:1–2.5:1 2.0:1–2.5:1 2.5:1–3.5:1 2.5:1–3.5:1 2.5:1–3.5:1 2.5:1–3.5:1 2.5:1–3.5:1 2.5:1–3.5:1 Nozzle Type General Purpose General Purpose General Purpose General Purpose General Purpose General Purpose General Purpose Reverse Taper Clamp Pressure 5–6 Tons/in2 * A reverse temperature profile is important to obtain optimum conductive properties.
PROBLEM CAUSE SOLUTION Incomplete Fill Melt and/or mold temperature too cold Mold design Shot Size • Increase nozzle and barrel temperatures • Increase mold temperature • Increase injection speed • Increase pack and hold pressure • Increase nozzle tip diameter • Check thermocouples and heater bands • Enlarge or widen vents and increase number of vents • Check that vents are unplugged • Check that gates are unplugged • Enlarge gates and/or runners • Perform short shots to determine fill pattern and verify proper vent location • Increase wall thickness to move gas trap to parting line • Increase shot size • Increase cushion Brittleness Melt temperature too low Degraded/Overheated material Gate location and/or size • Increase melt temperature • Increase injection speed • Measure melt temperature with pyrometer • Decrease melt temperature • Decrease back pressure • Use smaller barrel/excessive residence time • Relocate gate to nonstress area • Increase gate size to allow higher flow speed and lower molded-in stress Fibers on Surface (Splay) Melt temperature too low Insufficient packing • Increase melt temperature • Increase mold temperature • Increase injection speed • Increase pack and hold pressure, and time • Increase shot size • Increase gate size Sink Marks Part geometry too thick Melt temperature too hot Insufficient material volume • Reduce wall thickness • Reduce rib thickness • Decrease nozzle and barrel temperatures • Decrease mold temperature • Increase shot size • Increase injection rate • Increase packing pressure • Increase gate size Flash Injection pressure too high Excess material volume Melt and/or mold temperature too hot • Decrease injection pressure • Increase clamp pressure • Decrease injection speed • Increase transfer position • Decrease pack pressure • Decrease shot size • Decrease injection speed • Decrease nozzle and barrel temperatures • Decrease mold temperature • Decrease screw speed TROUBLESHOOTING RECOMMENDATIONS PROBLEM CAUSE SOLUTION Excessive Shrink Too much orientation • Increase packing time and pressure • Increase hold pressure • Decrease melt temperature • Decrease mold temperature • Decrease injection speed • Decrease screw rpm • Increase venting • Increase cooling time Not Enough Shrink Too little orientation • Decrease packing pressure and time • Decrease hold pressure • Increase melt temperature • Increase mold temperature • Increase injection speed • Increase screw rpm • Decrease cooling time Burning Melt and/or mold temperature too hot Mold design Moisture • Decrease nozzle and barrel temperatures • Decrease mold temperature • Decrease injection speed • Clean, widen and increase number of vents • Increase gate size or number of gates • Verify material is dried at proper conditions Nozzle Drool Nozzle temperature too hot • Decrease nozzle temperature • Decrease back pressure • Increase screw decompression • Verify material has been dried at proper conditions Weld Lines Melt front temperatures too low Mold design • Increase pack and hold pressure • Increase melt temperature • Increase vent width and locations • Increase injection speed • Increase mold temperature • Decrease injection speed • Increase gate size • Perform short shots to determine fill pattern and verify proper vent location • Add vents and/or false ejector pin • Move gate location Warp Excessive orientation Mold design • Increase cooling time • Increase melt temperature • Decrease injection pressure and injection speed • Increase number of gates Sticking in Mold Cavities are overpacked Mold design Part is too hot • Decrease injection speed and pressure • Decrease pack and hold pressure • Decrease nozzle and barrel temperatures • Decrease mold temperature • Increase cooling time • Increase draft angle • Decrease nozzle and barrel temperatures • Decrease mold temperature • Increase cooling time TROUBLESHOOTING RECOMMENDATIONS www.avient.com Copyright © 2020, Avient Corporation.
https://www.avient.com/sites/default/files/2020-12/therma-tech-processing-guide.pdf
Injection Molding Parameters Base Resin PPA PPS PA 6/6 PA 12 Barrel Temperatures °F (°C)* Rear Zone 550–580 (288–305) 550–580 (288–305) 440–490 (227–254) 440–480 (227–250) Center Zone 560–600 (293–316) 560–615 (293–324) 470–510 (243–266) 460–510 (238–266) Front Zone 580–620 (304–327) 590–630 (310–333) 490–540 (254–282) 480–520 (250–271) Nozzle 575–615 (302 –324) 600–625 (316–330) 520–570 (271–300) 500–530 (260–277) Melt Temperature °F (°C) 575–615 (302–324) 600–625 (316–330) 520–570 (271–300) 500–530 (260–277) Mold Temperature °F (°C) 250–300 (121–150) 250–300 (121–150) 150–200 (66–93) 150–200 (66–93) Pack and Hold Pressure 50–80% of Injection Pressure Injection Velocity 1.0–3.0 in/sec Back Pressure 25–100 psi Screw Speed 25–75 rpm Drying Parameters °F (°C) 6 hours @ 175 (80) 6 hours @ 300 (150) 3 hours @ 180 (82) 3 hours @ 180 (82) Cushion 0.125–0.250 in Screw Compression Ratio 2.5:1–3.5:1 2.0:1–2.5:1 2.5:1–3.5:1 2.5:1–3.5:1 Nozzle Type General Purpose General Purpose Reverse Taper Reverse Taper Clamp Pressure 4–5 tons/in2 of projected area of cavities and runner system * Barrel temperatures should be elevated for compounds designed for electrical insulative properties.
Maintain a minimum draft angle of 1° per side. 4 Therma-Tech Troubleshooting Recommendations Problem Cause Solution Incomplete Fill Melt and/or mold too cold • Increase nozzle and barrel temperatures • Increase mold temperature • Increase injection rate • Increase pack and hold pressure • Increase nozzle tip diameter • Check thermocouples and heater bands Mold design • Enlarge or widen vents and increase number of vents • Check that vents are unplugged • Check that gates are unplugged • Enlarge gates and/or runners • Perform short shots to determine fill pattern and verify proper vent location • Increase wall thickness to move gas trap to parting line Shot size • Increase shot size • Increase cushion • Decrease transfer position Brittleness Low melt temperature • Increase melt temperature • Increase injection rate • Measure melt temperature with pyrometer Degraded/ overheated material • Decrease melt temperature • Decrease back pressure • Use smaller barrel/excessive residence time • Decrease screw rpm Gate location and/or size • Relocate gate to nonstress area • Increase gate size to allow higher flow rate and lower molded in stress Fibers on Surface (Splay) Melt temperature too low • Increase melt temperature • Increase mold temperature • Increase injection speed • Increase screw rpm Insufficient packing • Increase pack and hold pressure, and time • Increase shot size • Increase gate size Processing Guide 5 Problem Cause Solution Sink Marks Part geometry too thick • Reduce wall thickness • Reduce rib thickness • Maintain nominal wall thickness Melt too hot • Decrease nozzle and barrel temperatures • Decrease mold temperature Insufficient material volume • Increase shot size • Increase injection rate • Increase pack pressure/time • Increase gate size Flash Injection pressure too high • Decrease injection pressure • Increase clamp pressure • Decrease injection rate • Increase transfer position Excess material volume • Decrease pack pressure • Decrease shot size • Decrease injection rate Melt and/or mold too hot • Decrease nozzle and barrel temperatures • Decrease mold temperature • Decrease screw speed Excessive Shrink Too much orientation • Increase packing time and pressure • Increase hold pressure • Decrease melt temperature • Decrease mold temperature • Decrease injection speed • Decrease screw rpm • Increase venting • Increase cooling time Not Enough Shrink Too little orientation • Decrease packing pressure and time • Decrease hold pressure • Increase melt temperature • Increase mold temperature • Increase injection speed • Increase screw rpm • Decrease cooling time Troubleshooting Recommendations 6 Therma-Tech Troubleshooting Recommendations Problem Cause Solution Burning Melt and/or mold too cold • Decrease nozzle and barrel temperatures • Decrease mold temperature • Decrease injection rate Mold design • Clean, widen and increase number of vents • Increase gate size or number of gates Moisture • Verify material is dried at proper conditions Nozzle Drool Nozzle temperature too hot • Decrease nozzle temperature • Decrease back pressure • Increase screw decompression • Verify material has been dried at proper conditions Weld Lines Melt front temperatures are too low • Increase pack and hold pressure • Increase melt temperature • Increase vent width and locations • Increase injection rate • Increase mold temperature Mold design • Decrease injection rate • Increase gate size • Perform short shots to determine fill pattern and verify proper vent location • Add vents and/or false ejector pin • Move gate location Warp Excessive orientation • Increase cooling time • Increase melt temperature • Decrease injection pressure and injection rate Mold design • Increase number of gates Sticking in Mold Cavities are overpacked • Decrease injection rate and pressure • Decrease pack and hold pressure • Decrease nozzle and barrel temperatures • Decrease mold temperature • Increase cooling time Mold design • Increase draft angle Part is too hot • Decrease nozzle and barrel temperatures • Decrease mold temperature • Increase cooling time 1.844.4AVIENT www.avient.com Copyright © 2020, Avient Corporation.
https://www.avient.com/resource-center/knowledge-base/article/injection-molding-troubleshooting
Reduce pack and hold pressure.
Check hold pressures.
Increase hold time.
https://www.avient.com/resource-center/knowledge-base/article/injection-molding-troubleshooting?rtype%5B0%5D=1164
Reduce pack and hold pressure.
Check hold pressures.
Increase hold time.
https://www.avient.com/news/polyone-highlights-advanced-healthcare-solutions-medtec-europe-2014
Avient To Hold Second Quarter 2025 Conference Call...
https://www.avient.com/sites/default/files/2025-07/Avient 2024 Sustainability Report_6.pdf
We have conducted extensive portfolio prioritization and identified growth vectors to both catalyze growth in our core and to build businesses in high growth markets supported by secular trends.
Avient holds this process as a standard with all suppliers, thus reducing third-party supply chain risk.
All Avient manufacturing facilities comply with applicable regulatory requirements regarding emissions limits and hold valid air permits where required.
https://www.avient.com/sites/default/files/2025-01/ISO 16949 Tossiat%2C France.pdf
Date Of Certification: 11 December 2024 Date Of Expiration: 10 December 2027 IATF Certificate N°: 0558656 Bureau Veritas Certification Certificate No: FR094003 - IATF Revision: 1 For Bureau Veritas Certification Holding, Tour ALTO, 4 place des saisons, 92400 COURBEVOIE – France (The official document is in English.
Any translations of this document shall be used for reference only.) 1/2 Certificate of Approval AWARDED TO PolyOne France Tossiat Route de la vavrette, 01250, Tossiat - France IATF USI: LWZS4P Bureau Veritas Certification certify that the Quality Management System of the above organisation has been audited and found to be in accordance with the requirements of IATF 16949 - FIRST EDITION and the applicable customer specific requirements SCOPE Design and manufacturing PERMITTED EXCLUSION(S) None PRODUCT(S) DELIVERED colour with additive concentrates for thermoplastic resins and speciality compounds obtained by mixing and extrusion https://e-cer.bureauveritas.com/68LJQE0ZV0CO6I7YW0YSXOUMV9WWROQPHPI2AOHRRLFFVRAVTFVZGXKWIE3TOWLTTKEWCPQB9UNAPXHH6T0HXOMUEDVYPRPJLEXBBTKQYPBRICYOKY143TECQ5UMHGA3JX Date Of Certification: 11 December 2024 Date Of Expiration: 10 December 2027 IATF Certificate N°: 0558656 Bureau Veritas Certification Certificate No: FR094003 - IATF Revision: 1 For Bureau Veritas Certification Holding, Tour ALTO, 4 place des saisons, 92400 COURBEVOIE – France (The official document is in English.
https://www.avient.com/sites/default/files/2024-08/Avient 2023 Sustainability Report_6.pdf
Avient holds this process as a standard with all suppliers, thus reducing third-party supply chain risk.
Wulfsohn Former Chairman and Chief Executive Officer, Ashland Global Holdings, Inc.
GRI 408: Child Labor 103–1, 2 and 3 Management approach—GRI 103 Product—Supplier Collaboration Page 48 Avient’s Human Rights Policy Page 29 Avient Supplier Code of Conduct 408–1 Operations and suppliers at significant risk for incidents of child labor Product—Supplier Collaboration Page 48 To our knowledge, Avient’s operations do not have a significant risk of child labor.