

Stat-Tech[™] STATIC DISSIPATIVE & ELECTRICALLY CONDUCTIVE FORMULATIONS

PROCESSING GUIDE

Stat-Tech[™]

Stat-Tech[™] Static Dissipative and Electrically Conductive Formulations are specifically engineered to provide antistatic, ESD and EMI/RFI shielding performance for critical electronic equipment applications. These materials combine the performance of select engineering resins with reinforcing additives, such as carbon powder, carbon fiber, nickel-coated carbon fiber and stainless steel fiber, for low-to-high levels of conductivity depending upon application requirements.

Base Resin	PC	PC/PSU	PES	PEI	РР	ABS	PEEK	РА
Barrel Temperati	Barrel Temperatures* °F (°C)							
Rear Zone	530–560 (277–293)	550–575 (288–302)	660–700 (349–371)	675–725 (357–385)	390–420 (199–216)	425–460 (219–238)	680–730 (360–388)	430–500 (221–260)
Center Zone	515–560 (269–288)	540–565 (282–296)	650–690 (343–366)	655–710 (352–377)	380–405 (193–207)	415–450 (213–232)	670–710 (354–377)	420–490 (216–254)
Front Zone	510–525 (266–274)	530–555 (277–291)	640–680 (338–360)	655–700 (346–371)	370–395 (188–202)	405–440 (207–227)	650–690 (343–366)	410–480 (210–249)
Nozzle	520–535 (271–280)	540–565 (282–296)	650–690 (343–366)	665–710 (352–377)	380–400 (193–204)	415–450 (213–232)	660–700 (349–371)	420–490 (216–254)
Melt Temperature	525–560 (274–293)	530–580 (277–304)	650-700 (343-371)	660–730 (349–388)	375–395 (191–202)	410-460 (210-238)	650–730 (343–388)	420–500 (216–260)
Mold Temperature	175–250 (80–121)	160–220 (71–104)	280–350 (138–177)	275–350 (135–177)	100–135 (38–57)	150–180 (66–82)	300–425 (149–219)	160-230 (71-110)
Pack & Hold Pressure	50%–75% of Injection Pressure							
Injection Velocity in/s	0.5–2.0							
Back Pressure psi	50							
Screw Speed rpm	40-70	40-70	40-70	40-70	40-70	40-70	40-70	40-70**
Drying Parameters °F (°C)	6 hrs @ 250 (121)	4 hrs @ 250 (121)	4 hrs @ 275 (135)	4 hrs @ 250 (121)	3 hrs @ 300 (150)	2 hrs @ 200 (93)	3 hrs @ 275 (135)	4 hrs @ 180 (82)
Cushion in	0.125-0.250							
Screw Compression Ratio	2.0:1-2.5:1	2.0:1-2.5:1	2.5:1-3.5:1	2.5:1-3.5:1	2.5:1-3.5:1	2.5:1-3.5:1	2.5:1-3.5:1	2.5:1-3.5:1
Nozzle Type	General Purpose	General Purpose	General Purpose	General Purpose	General Purpose	General Purpose	General Purpose	Reverse Taper
Clamp Pressure	5–6 Tons/in ²							

* A reverse temperature profile is important to obtain optimum conductive properties. Other key processing parameters are slow injection speeds and low back pressures.

** Avoid processing for a resin-rich surface. Conductive properties are achieved with a silver or fibrous surface appearance.

STARTUP & SHUTDOWN	RECOMMENDATIONS
Purge Compound	HDPE or HIPS
Recycling	Recycling Stat-Tech up to 20% is permissible. Testing the application is highly recommended to determine the effect recycling has on the desired physical properties.

MOLD DESIGN	RECOMMENDATIONS
Gates	 Many different types of gates can be used such as pin, fan, tunnel, tab and edge gates. Gate type should be selected based on location and part geometry. Gate diameters equivalent to 50%-75% of the average wall thickness are recommended. Land lengths of 0.020"-0.035" (0.50mm-0.90mm) are typically recommended.
Runners	 Full-round runners or a modified trapezoid runner are the best designs. Half-round runners are not recommended. Only naturally balanced runner systems ("H" pattern) are recommended. Runner diameters larger than 0.150" (3.8mm) and not exceeding 0.375" (9.5mm) are recommended. Step each 90° bend in the system down in size (from sprue to gate) approximately 1/16" (1.5mm) to reduce pressure drop. Place vents at each 90° intersection and vent to atmosphere. Hot runner molds are acceptable and should be sized by the manufacturer.
Cold Slug Wells	 Place these wells at the base of the sprue to capture the cold material first emerging from the nozzle. Place wells at every 90° bend in the runner system. Well depths approximately 1.5 times the diameter of the runner provide the best results.
Venting	 Place vents at the end of fill and anywhere potential knit/weld lines will occur. All vents need to be vented to atmosphere. For circular parts, full perimeter venting is recommended. Cut vent depths to: PC Compounds: 0.001"-0.002" depth and 0.250" width PC/PSU Compounds: 0.002"-0.003" depth and 0.250" width PES Compounds: 0.003"-0.004" depth and 0.250" width PEI Compounds: 0.001"-0.002" depth and 0.250" width PP Compounds: 0.001"-0.002" depth and 0.250" width PEI Compounds: 0.001"-0.002" depth and 0.250" width PP Compounds: 0.001"-0.002" depth and 0.250" width PP Compounds: 0.001"-0.002" depth and 0.250" width ABS Compounds: 0.0015"-0.0025" depth and 0.250" width Nylon Compounds: 0.002" min. depth and 0.250" width Increase vent depth to 0.040" (1.0mm) at 0.250" (4.0mm) away from the cavity and vent to atmosphere.
Draft Angle	 Maintain a minimum draft angle of 1/2° per side.

TROUBLESHOOTING RECOMMENDATIONS

PROBLEM	CAUSE	SOLUTION	
Incomplete Fill	Melt and/or mold temperature too cold	 Increase nozzle and barrel temperatures Increase mold temperature Increase injection speed Increase pack and hold pressure Increase nozzle tip diameter Check thermocouples and heater bands 	
	Mold design	 Enlarge or widen vents and increase number of vents Check that vents are unplugged Check that gates are unplugged Enlarge gates and/or runners Perform short shots to determine fill pattern and verify proper vent location Increase wall thickness to move gas trap to parting line 	
	Shot Size	Increase shot size Increase cushion	
Brittleness	Melt temperature too low	 Increase melt temperature Increase injection speed Measure melt temperature with pyrometer 	
	Degraded/Overheated material	 Decrease melt temperature Decrease back pressure Use smaller barrel/excessive residence time 	
	Gate location and/or size	 Relocate gate to nonstress area Increase gate size to allow higher flow speed and lower molded-in stress 	
Fibers on Surface (Splay)	Melt temperature too low	 Increase melt temperature Increase mold temperature Increase injection speed 	
	Insufficient packing	 Increase pack and hold pressure, and time Increase shot size Increase gate size 	
Sink Marks	Part geometry too thick	 Reduce wall thickness Reduce rib thickness	
	Melt temperature too hot	Decrease nozzle and barrel temperatures Decrease mold temperature	
	Insufficient material volume	 Increase shot size Increase injection rate Increase packing pressure Increase gate size 	
Flash	Injection pressure too high	 Decrease injection pressure Increase clamp pressure Decrease injection speed Increase transfer position 	
	Excess material volume	 Decrease pack pressure Decrease shot size Decrease injection speed 	
	Melt and/or mold temperature too hot	 Decrease nozzle and barrel temperatures Decrease mold temperature Decrease screw speed 	

TROUBLESHOOTING RECOMMENDATIONS

PROBLEM	CAUSE	SOLUTION		
Excessive Shrink	Too much orientation	 Increase packing time and pressure Increase hold pressure Decrease melt temperature Decrease mold temperature Decrease injection speed Decrease screw rpm Increase venting Increase cooling time 		
Not Enough Shrink	Too little orientation	 Decrease packing pressure and time Decrease hold pressure Increase melt temperature Increase mold temperature Increase injection speed Increase screw rpm Decrease cooling time 		
Burning	Melt and/or mold temperature too hot	 Decrease nozzle and barrel temperatures Decrease mold temperature Decrease injection speed 		
	Mold design	 Clean, widen and increase number of vents Increase gate size or number of gates 		
	Moisture	Verify material is dried at proper conditions		
Nozzle Drool	Nozzle temperature too hot	 Decrease nozzle temperature Decrease back pressure Increase screw decompression Verify material has been dried at proper conditions 		
Weld Lines	Melt front temperatures too low	 Increase pack and hold pressure Increase melt temperature Increase vent width and locations Increase injection speed Increase mold temperature 		
	Mold design	 Decrease injection speed Increase gate size Perform short shots to determine fill pattern and verify proper vent location Add vents and/or false ejector pin Move gate location 		
Warp	Excessive orientation	 Increase cooling time Increase melt temperature Decrease injection pressure and injection speed 		
	Mold design	Increase number of gates		
Sticking in Mold	Cavities are overpacked	 Decrease injection speed and pressure Decrease pack and hold pressure Decrease nozzle and barrel temperatures Decrease mold temperature Increase cooling time 		
	Mold design	Increase draft angle		
	Part is too hot	 Decrease nozzle and barrel temperatures Decrease mold temperature Increase cooling time 		

Copyright © 2020, Avient Corporation. Avient makes no representations, guarantees, or warranties of any kind with respect to the information contained in this document about its accuracy, suitability for particular applications, or the results obtained or obtainable using the information. Some of the information arises from laboratory work with small-scale equipment which may not provide a reliable indication of performance or properties obtained or obtainable on larger-scale equipment. Values reported as "typical" or stated without a range do not state minimum or maximum properties; consult your sales representative for property ranges and min/max specifications. Processing conditions can cause material properties to shift from the values stated in the information. Avient makes no warranties or guarantees respecting suitability of either Avient's products or the information for your process or end-use application. You have the responsibility to conduct full-scale end-product performance testing to determine suitability in your application, and you assume all risk and liability arising from your use of the information and/or use or handling of any product. AVIENT MAKES NO WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, either with respect to the information or products reflected by the information. This literature shall NOT operate as permission, recommendation, or inducement to practice any patented invention without permission of the patent owner.

www.avient.com