https://www.avient.com/sites/default/files/2020-09/stan-tone-pep-et-product-bulletin.pdf
% Pigment Specific Gravity Color Index Lightfastness
WHITE
10PEP03 Titanium Dioxide, Rutile 60 2.06 PW-6 I/O
YELLOW
12PEP01 Diarylide AAOT GS 20 1.24 PY-14 I
12PEP03 Diarylide HR RS 25 1.23 PY-83 I/O (Mass)
13PEP02 Isoindolinone RS 25 1.31 PY-110 I/O
13PEP03 Benzimidazolone GS 25 1.25 PY-151 I/O (Mass)
81PEP01 Iron Oxide 60 2.07 PY-42 I/O
ORANGE
15PEP03 Benzimidazolone RS 25 1.27 PO-36 I/O
RED
23PEP04 Quinacridone BS 25 1.24 PV-19 I/O
23PEP06 Specialty Naphthol BS 25 1.23 PR-170 I/O (Mass) C
25PEP01 Red 2B, Ca Salt BS 17 1.26 PR-48:2 I/O (Mass)
28PEP01 Red 2B, Ba Salt YS 25 1.32 PR48:1 I/O (Mass)
82PEP01 Iron Oxide, Light YS 27 1.5 PR-101 I/O
82PEP02 Iron Oxide, Light BS 60 2.2 PR-101 I/O
82PEP04 Iron Oxide, Light VYS 60 2.2 PR-101 I/O
82PEP05 Iron Oxide, Dark VBS 60 2.21 PR-101 I/O
BLUE
40PEP01 Phthalocyanine GS 25 1.27 PB-15:3 I/O
40PEP05 Phthalocyanine RS 25 1.27 PB-15 I/O
42PEP02 Ultramarine 35 1.44 PB-29 I/O
49PEP01 Cobalt 31 1.54 PB-28 I/O
GREEN
50PEP01 Phthalocyanine BS 16 1.28 PG-7 I/O
50PEP03 Phthalocyanine YS 16 1.28 PG-7 I/O
59PEP02 Chromium Oxide 70 2.6 PG-17 I/O
VIOLET/MAGENTA
24PEP03 Quinacridone Violet 20 1.24 PV-19 I/O
24PEP04 Ultramarine Violet 50 1.69 PV-15 I/O
24PEP05 Quinacridone Magenta 20 1.24 PR-122 I/O
24PEP06 Benzimidazolone 20 1.23 PV-32 I/O
24PEP07 Carbazole Violet 13 1.22 PV-23 I/O
BROWN/TAN
83PEP01 Iron Oxide, Light 34 1.6 PBr-6 I/O
83PEP02 Iron Oxide, Dark 29 1.51 PBr-6 I/O
BLACK
90PEP01 Furnace - High Jet 24 1.3 PBk-7 I/O
90PEP04 Furnace - Medium 17 1.27 PBk-7 I/O
90PEP05 Iron Oxide 33 1.58 PBk-11 I/O
POLYESTER URETHANE PASTE COLORANTS (PEP)
Stan-Tone Code Pigment Type Approx. % Pigment Specific Gravity Color Index Lightfastness
WHITE
10ET03 Titanium Dioxide, Rutile 56 1.74 PW-6 I/O
YELLOW
12ET01 Diarylide AAOT GS 40 1.15 PY-14 I
12ET03 Diarylide HR RS 20 1.07 PY-83 I/O (Mass)
13ET02 Isoindolinone RS 20 1.11 PY-110 I/O
13ET03 Benzimidazolone GS 20 1.08 PY-151 I/O (Mass)
81ET01 Iron Oxide 60 1.84 PY-42 I/O
ORANGE
15ET03 Benzimidazolone RS 25 1.11 PO-36 I/O
RED
20ET01 Red Lake C YS 30 1.16 PR-53 I
22ET01 Lithol Rubine BS 30 1.17 PR-57:1 I
23ET04 Quinacridone BS 15 1.05 PV-19 I/O
23ET06 Specialty Naphthol BS 30 1.09 PR-170 I/O (Mass) C
25ET01 Red 2B, Ca Salt BS 29 1.15 PR-48:2 I/O (Mass)
28ET01 Red 2B, Ba Salt YS 30 1.18 PR-48:1 I/O (Mass)
82ET01 Iron Oxide, Light BS 60 1.94 PR-101 I/O
82ET02 Iron Oxide, Dark VBS 60 1.95 PR-101 I/O
82ET04 Iron Oxide, Light VYS 60 1.94 PR-101 I/O
BLUE
40ET01 Phthalocyanine GS 25 1.11 PB-15:3 I/O
40ET05 Phthalocyanine RS 20 1.09 PB-15 I/O
42ET02 Ultramarine 55 1.46 PB-29 I/O
49ET01 Cobalt 65 2.02 PB-28 I/O
GREEN
50ET01 Phthalocyanine BS 30 1.2 PG-7 I/O
50ET03 Phthalocyanine YS 25 1.16 PG-7 I/O
59ET01 Chromium Oxide 65 2.12 PG-17 I/O
VIOLET/MAGENTA
24ET03 Quinacridone Violet 20 1.08 PV-19 I/O
24ET04 Ultramarine Violet 60 1.66 PV-15 I/O
24ET05 Quinacridone Magenta 20 1.08 PR-122 I/O
24ET06 Benzimidazolone 25 1.08 PV-32 I/O
24ET07 Carbazole Violet 13 1.05 PV-23 I/O
BROWN/TAN
83ET01 Iron Oxide, Light 64 2.02 PBr-6 I/O
83ET02 Iron Oxide, Dark 60 1.9 PBr-6 I/O
BLACK
90ET04 Furnace - Medium 22 1.12 PBk-7 I/O
90ET05 Iron Oxide 60 1.9 PBk-11 I/O
POLYETHER URETHANE PASTE COLORANTS (ET)
PEP/ET
RS = Red Shade
YS = Yellow Shade
VYS = Very Yellow Shade
BS = Blue Shade
VBS = Very Blue Shade
GS = Green Shade
HR = Heat-Resistant
LIGHTFASTNESS
I = Indoor Only
I/O = Indoor or Outdoor
Mass = Outdoor Masstone Application Only
C = Some Caution Advised
www.avient.com
Copyright © 2020, Avient Corporation.
https://www.avient.com/sites/default/files/2022-11/Wilflex Epic Rio Ready-for-Use Standard Colors Interactive Color Card.pdf
With high speed
wet-on-wet printing and the capability to cure at
low to standard temperatures, Wilflec Epic Rio RFU
colors are developed to improve productivity and
reduce cost.
https://www.avient.com/sites/default/files/2024-09/Avient_RY 2023 CDP Verification Opinion Declaration.pdf
Apex has implemented a Code of Ethics across the business to maintain high ethical standards among staff in their
day-to-day business activities.
https://www.avient.com/sites/default/files/2020-09/lubrione-processing-guide.pdf
PROBLEM CAUSE SOLUTION
Incomplete Fill Melt and/or mold
temperature too cold
Mold design
Shot Size
• Increase nozzle and barrel temperatures
• Increase mold temperature
• Increase injection speed
• Increase pack and hold pressure
• Increase nozzle tip diameter
• Check thermocouples and heater bands
• Enlarge or widen vents and increase number of vents
• Check that vents are unplugged
• Check that gates are unplugged
• Enlarge gates and/or runners
• Perform short shots to determine fill pattern and verify
proper vent location
• Increase wall thickness to move gas trap to parting line
• Increase shot size
• Increase cushion
Brittleness Melt temperature too low
Degraded/Overheated material
Gate location and/or size
• Increase melt temperature
• Increase injection speed
• Measure melt temperature with pyrometer
• Decrease melt temperature
• Decrease back pressure
• Use smaller barrel/excessive residence time
• Relocate gate to nonstress area
• Increase gate size to allow higher flow speed and
lower molded-in stress
Fibers on Surface
(Splay)
Melt temperature too low
Insufficient packing
• Increase melt temperature
• Increase mold temperature
• Increase injection speed
• Increase pack and hold pressure, and time
• Increase shot size
• Increase gate size
Sink Marks Part geometry too thick
Melt temperature too hot
Insufficient material volume
• Reduce wall thickness
• Reduce rib thickness
• Decrease nozzle and barrel temperatures
• Decrease mold temperature
• Increase shot size
• Increase injection rate
• Increase packing pressure
• Increase gate size
Flash Injection pressure too high
Excess material volume
Melt and/or mold
temperature too hot
• Decrease injection pressure
• Increase clamp pressure
• Decrease injection speed
• Increase transfer position
• Decrease pack pressure
• Decrease shot size
• Decrease injection speed
• Decrease nozzle and barrel temperatures
• Decrease mold temperature
• Decrease screw speed
TROUBLESHOOTING RECOMMENDATIONS
PROBLEM CAUSE SOLUTION
Excessive Shrink Too much orientation • Increase packing time and pressure
• Increase hold pressure
• Decrease melt temperature
• Decrease mold temperature
• Decrease injection speed
• Decrease screw rpm
• Increase venting
• Increase cooling time
Not Enough Shrink Too little orientation • Decrease packing pressure and time
• Decrease hold pressure
• Increase melt temperature
• Increase mold temperature
• Increase injection speed
• Increase screw rpm
• Decrease cooling time
Burning Melt and/or mold
temperature too hot
Mold design
Moisture
• Decrease nozzle and barrel temperatures
• Decrease mold temperature
• Decrease injection speed
• Clean, widen and increase number of vents
• Increase gate size or number of gates
• Verify material is dried at proper conditions
Nozzle Drool Nozzle temperature too hot • Decrease nozzle temperature
• Decrease back pressure
• Increase screw decompression
• Verify material has been dried at proper conditions
Weld Lines Melt front temperatures
too low
Mold design
• Increase pack and hold pressure
• Increase melt temperature
• Increase vent width and locations
• Increase injection speed
• Increase mold temperature
• Decrease injection speed
• Increase gate size
• Perform short shots to determine fill pattern and verify
proper vent location
• Add vents and/or false ejector pin
• Move gate location
Warp Excessive orientation
Mold design
• Increase cooling time
• Increase melt temperature
• Decrease injection pressure and injection speed
• Increase number of gates
Sticking in Mold Cavities are overpacked
Mold design
Part is too hot
• Decrease injection speed and pressure
• Decrease pack and hold pressure
• Decrease nozzle and barrel temperatures
• Decrease mold temperature
• Increase cooling time
• Increase draft angle
• Decrease nozzle and barrel temperatures
• Decrease mold temperature
• Increase cooling time
TROUBLESHOOTING RECOMMENDATIONS
Note: These are general processing conditions.
https://www.avient.com/sites/default/files/2020-08/2020-hammerhead-application-install-guide.pdf
HAMMERHEAD™
MARINE COMPOSITE PANELS
APPLICATION & INSTALLATION GUIDE
PRODUCT
DESCRIPTION
FEATURE BENEFIT
Exceptional strength-to-weight ratio
Lightweight yet strong structural
performance and increased payloads
Resistance to UV light, chemicals,
moisture degradation and rot
Resistance to harsh marine conditions
Tough and impact resistant Durability and long product life
Dimensionally stable
Consistent performance in extreme
temperature and humidity fluctuations
Strong adhesive properties Easy bonding to various materials
FEATURE BENEFIT
Ready-to-install Fewer parts & reduced scrap
Large format
Improved aesthetics with
seamless designs
Made via continuous-fiber
manufacturing process
Consistent quality in every panel
PERFORMANCE ADVANTAGES
MANUFACTURING ADVANTAGES
Hammerhead™ Marine Composite
Panels are made from continuous glass-
fiber reinforced thermoplastic face
sheets and polyester foam cores.
https://www.avient.com/sites/default/files/resources/Proxy%2520Statement%2520for%2520Web%2520Hosting.pd_.pdf
Attending and Voting at the Annual Meeting
PROXY SUMMARY
Company Operating Performance
Our Company Culture
PROXY SUMMARY
Impact of Our Performance on Named Executive Officer 2018 Compensation
Annual Incentive Plan
2018 Annual Incentive Program Payouts
Named Executive Officer
2018
Target Opportunity ($) Payout (%) Payout ($)
Long-Term Incentive Program
2016 – 2018 Cash-Settled Performance Units
Performance Measure: Adjusted EPS
Performance Periods Weighting Target Result Payout %
PROXY SUMMARY
Our Director Nominees and Committee Membership
Name Age Director
Since
Principal
Position
Notable Skills and
Experiences
Independent Committee Membership*
(M=Member, C=Chair)
AC CC N&GC EH&SC
PROXY SUMMARY
Name Age Director
Since
Principal
Position
Notable Skills and
Experiences
Independent Committee Membership*
(M=Member, C=Chair)
AC CC N&GC EH&SC
Average Tenure Average Age Gender Diversity
5.25 59 30%
Governance Highlights
Director Independence
Independent Lead Director
PROXY SUMMARY
Board Oversight of Risk Management
Stock Ownership Requirements
Board Practices
PROXY STATEMENT
POLYONE CORPORATION
PolyOne Center
33587 Walker Road
Avon Lake, Ohio 44012
PROXY STATEMENT
Dated March 28, 2019
ELECTION OF BOARD OF DIRECTORS
PROPOSAL 1 — ELECTION OF BOARD OF DIRECTORS
Our Board recommends a vote FOR
all the nominees listed below.
https://www.avient.com/sites/default/files/2022-06/Maxxam FR Injection Molding Processing Guide.pdf
Vents should be placed at the intersection of each 90° bend in the runner
system off of the cold slug well and vented to atmosphere
PROBLEM CAUSE SOLUTION
Black Specks
Contamination
• Purge barrel with general purpose PP
• Verify correct nozzle is being used
• Pull screw for cleaning
Degraded/overheated
material
• Decrease melt temperature
• Decrease back pressure
• Decrease injection speed
• Use appropriately sized barrel
Brittleness
Degraded/overheated material
• Decrease melt temperature
• Decrease back pressure
• Decrease injection speed
• Use appropriately sized barrel
Gate location and/or size
• Relocate gate to nonstress area
• Increase gate size to allow higher flow rate and
lower molded-in stress
Burning
Process related
• Decrease nozzle and barrel temperatures
• Decrease mold temperature
• Decrease injection rate
Mold design
• Clean, widen and increase number of vents
• Increase gate size to reduce shear
Fibers/Minerals on
Surface or Uneven
Surface Appearance
Melt temperature too low
• Increase melt temperature
• Increase mold temperature
• Increase injection speed
Insufficient packing
• Increase hold pressure and time
• Increase shot size
Flash
Injection pressure
too high
• Decrease injection pressure
• Increase clamp pressure
• Decrease injection rate
• Increase transfer position
Excess material volume
• Adjust transfer position
• Decrease pack pressure
• Decrease shot size
• Decrease injection rate
Melt and/or mold too hot
• Decrease nozzle and barrel temperatures
• Decrease mold temperature
• Decrease screw speed
Loose clamp
• Reset mold height
• Increase clamp tonnage
Troubleshooting Recommendations
PROBLEM CAUSE SOLUTION
Incomplete Fill
Melt and/or mold too cold
• Increase nozzle and barrel temperatures
• Increase mold temperature
• Increase injection rate
Mold design
• Enlarge or widen vents and increase number
of vents
• Check that vents are unplugged
• Check that gates are unplugged
• Enlarge gates and/or runners
• Perform short shots to determine fill pattern
and verify proper vent location
• Increase wall thickness to move gas trap to
parting line
Shot size
• Adjust transfer position to 98% full
• Increase shot size
Nozzle Drool Nozzle temperature too hot
• Decrease nozzle temperature
• Decrease back pressure
• Increase screw decompression
Shrink
Too much shrink
• Increase cooling time
• Decrease mold temperature
Too little shrink
• Decrease cooling time
• Increase mold temperature
Sink Marks
Part geometry too thick
• Reduce wall thickness
• Reduce rib thickness
Melt too hot
• Decrease nozzle and barrel temperatures
• Decrease mold temperature
Insufficient material
volume
• Adjust transfer position
• Increase shot size
• Increase injection rate
• Increase packing pressure
Troubleshooting Recommendations (continued)
PROBLEM CAUSE SOLUTION
Sticking in Mold
Overfilled cavity
• Decrease injection rate and pressure
• Decrease hold pressure
• Adjust transfer position
• Decrease nozzle and barrel temperatures
• Decrease mold temperature
• Decrease cooling time
Mold design
• Increase draft angle
• Polish cores in direction of ejection
Part is too hot
• Decrease nozzle and barrel temperatures
• Decrease mold temperature
• Increase cooling time
Warp
Process related
• Increase cooling time
• Increase melt temperature
• Increase pack pressure
• Increase pack time
• Decrease mold temperature
Mold design • Inspect for non-uniform mold cooling
Part design • Inspect for non-uniform wall thickness
Temperature control unit
incorrect temperature
• Check settings
• Inspect thermocouple
Weld Lines
Melt front temperatures
are too low
• Increase pack and hold pressure
• Increase melt temperature
• Increase injection rate
• Increase mold temperature
Mold design
• Increase gate size
• Perform short shots to determine fill pattern
and verify proper vent location
• Add vents and/or false ejector pin
• Move gate location
1.844.4AVIENT
www.avient.com
Copyright © 2022, Avient Corporation.
https://www.avient.com/sites/default/files/2020-12/therma-tech-processing-guide.pdf
Maintain a minimum draft angle of 1° per side.
4 Therma-Tech
Troubleshooting Recommendations
Problem Cause Solution
Incomplete Fill
Melt and/or mold
too cold
• Increase nozzle and barrel temperatures
• Increase mold temperature
• Increase injection rate
• Increase pack and hold pressure
• Increase nozzle tip diameter
• Check thermocouples and heater bands
Mold design
• Enlarge or widen vents and increase number of vents
• Check that vents are unplugged
• Check that gates are unplugged
• Enlarge gates and/or runners
• Perform short shots to determine fill pattern and
verify proper vent location
• Increase wall thickness to move gas trap to
parting line
Shot size
• Increase shot size
• Increase cushion
• Decrease transfer position
Brittleness
Low melt
temperature
• Increase melt temperature
• Increase injection rate
• Measure melt temperature with pyrometer
Degraded/
overheated
material
• Decrease melt temperature
• Decrease back pressure
• Use smaller barrel/excessive residence time
• Decrease screw rpm
Gate location
and/or size
• Relocate gate to nonstress area
• Increase gate size to allow higher flow rate and lower
molded in stress
Fibers on Surface
(Splay)
Melt temperature
too low
• Increase melt temperature
• Increase mold temperature
• Increase injection speed
• Increase screw rpm
Insufficient packing
• Increase pack and hold pressure, and time
• Increase shot size
• Increase gate size
Processing Guide 5
Problem Cause Solution
Sink Marks
Part geometry
too thick
• Reduce wall thickness
• Reduce rib thickness
• Maintain nominal wall thickness
Melt too hot • Decrease nozzle and barrel temperatures• Decrease mold temperature
Insufficient
material volume
• Increase shot size
• Increase injection rate
• Increase pack pressure/time
• Increase gate size
Flash
Injection pressure
too high
• Decrease injection pressure
• Increase clamp pressure
• Decrease injection rate
• Increase transfer position
Excess
material volume
• Decrease pack pressure
• Decrease shot size
• Decrease injection rate
Melt and/or mold
too hot
• Decrease nozzle and barrel temperatures
• Decrease mold temperature
• Decrease screw speed
Excessive Shrink Too much orientation
• Increase packing time and pressure
• Increase hold pressure
• Decrease melt temperature
• Decrease mold temperature
• Decrease injection speed
• Decrease screw rpm
• Increase venting
• Increase cooling time
Not Enough Shrink Too little orientation
• Decrease packing pressure and time
• Decrease hold pressure
• Increase melt temperature
• Increase mold temperature
• Increase injection speed
• Increase screw rpm
• Decrease cooling time
Troubleshooting Recommendations
6 Therma-Tech
Troubleshooting Recommendations
Problem Cause Solution
Burning
Melt and/or mold
too cold
• Decrease nozzle and barrel temperatures
• Decrease mold temperature
• Decrease injection rate
Mold design • Clean, widen and increase number of vents• Increase gate size or number of gates
Moisture • Verify material is dried at proper conditions
Nozzle Drool Nozzle temperature too hot
• Decrease nozzle temperature
• Decrease back pressure
• Increase screw decompression
• Verify material has been dried at proper conditions
Weld Lines
Melt front temperatures
are too low
• Increase pack and hold pressure
• Increase melt temperature
• Increase vent width and locations
• Increase injection rate
• Increase mold temperature
Mold design
• Decrease injection rate
• Increase gate size
• Perform short shots to determine fill pattern
and verify proper vent location
• Add vents and/or false ejector pin
• Move gate location
Warp
Excessive orientation
• Increase cooling time
• Increase melt temperature
• Decrease injection pressure and injection rate
Mold design • Increase number of gates
Sticking in Mold
Cavities are
overpacked
• Decrease injection rate and pressure
• Decrease pack and hold pressure
• Decrease nozzle and barrel temperatures
• Decrease mold temperature
• Increase cooling time
Mold design • Increase draft angle
Part is too hot
• Decrease nozzle and barrel temperatures
• Decrease mold temperature
• Increase cooling time
1.844.4AVIENT
www.avient.com
Copyright © 2020, Avient Corporation.
https://www.avient.com/sites/default/files/2025-03/65537-Certificate-05MAR2025.pdf
Industrial Valle del Cinca S/N
Apartado , E-22300 Barbastro, Spain
Avient Corporation Design and Manufacture of Colorants and Compounds for Fluoropolymer
and High Temperature Polymers.
19 Francis J Clark Circle Bethel CT
06801 United States
Avient Corporation Design and Manufacture of Colorants and Additives for Plastics 03 Street 02, VSIP 820000 Thuận An
Binh Duong Vietnam
Avient Corporation Design and Manufacture of Colorants and Additives for Plastics Lot 1232, MK. 15, Kawasan Industri,
Kecil & Sederhana Butterworth
Penang 14120 Malaysia
Avient Corporation Design and Manufacture of Colorants and Additives for Plastics Autopista Medellín Km 2.5, Via
Parcelas Km 1, Vereda Siberia ,
250017 Cota, Colombia
Avient Corporation Design and Manufacture of Colour and Additive Concentrates,
Thermoplastic Resins and Specialty Compounds
Ihsan Dede Cad. , 41448 Gebze,
Türkiye
Avient Corporation Design and Manufacture of Colorants and Additives for Plastics 2#, Nanyunsan Rd, Huangpu District,
Science City, Guangzhou Hi-Tech
Industrial Development Zone ,
510663 Guangzhou,
Avient Corporation Design and Manufacture of Colorants and Additives for Plastics Avenida 34-11, Zona 12 Complejo
Parque Gobal , 01012 Guatemala
City, Guatemala
Avient Corporation Design and Manufacture of Specialty Engineered Thermoplastics Orhangazi Mah. 1683 Sok.
https://www.avient.com/sustainability-2020
Companies acquired by Avient go through a rigorous EH&S integration process to bring new sites in line with our high standards and policies.