https://www.avient.com/sites/default/files/2025-07/Caps _ Closures Industry Bulletin.pdf
FOCUS AREA KEY REQUIREMENTS AVIENT TECHNOLOGIES Visual aesthetics • Offer custom color design and special effects • Provide brand differentiation • Utilize cost-effective solutions • Enhance design and identification • Allow permanent and repeatable markings • Solid colorants • Lower cost-to-color liquid color concentrates • Special effects colorants – molded metallics, plated • Smartbatch™ Combination Colorants and Additives • Laser marking for decoration and identification Dimensional stability • Limit shrinkage and warpage • Maintain mechanical properties • Solid colorants • Nucleating agents Production efficiencies • Improve cycle times • Nucleating agents • Smartbatch colorants and additives • Laser marking additives • Clean processing additives • Slip agents • Antistatic additives • Laser marking for coding Sustainability and increased post-consumer recycled content (PCR) usage • Control viscosity to maintain operational efficiencies • Provide lightweighting • Extend shelf life • Mitigate odor • Melt flow modifiers or enhancers • Nucleating agents • Predictive laser measurements • Colors that manage warpage and dimensional stability • Chemical foaming agents • APR-approved oxygen scavenger in the closure • UV barrier additives • Odor adsorbers • Clarifiers • Compatibilizers and heat stabilizers Performance • Protect brand integrity • Enhance consumer experience • Prevent environmental stress cracking and hinge failure • Maintain seal • UV blockers • Solid colorants and liquid color concentrates • Impact modifiers • Antimicrobial additives • Antioxidants • TPE liners 1.844.4AVIENT www.avient.com Copyright © 2025, Avient Corporation.
https://www.avient.com/sites/default/files/2021-06/fl.datasheet-extrusion.pdf
Overview • FIBER-LINE® extrusion is the process of forming a polymer jacket of various thickness around a core of high-performance fibers • Fiber core can be parallel, twisted, or in rope form • Polymer jacket selected to optimize flex, chemical, temperature, & UV resistance Key Features • .50mm – 30.00mm size capability • Protect the core from mechanical, environmental, and chemical damage • Extend life of cable or strength member • Enhance flame & chemical resistance • Improve UV resistance • Many polymers available FIBER-LINE® FIBERS SUITABLE FOR EXTRUSION • Kevlar® Para-Aramid • Vectran® LCP • Zylon® PBO • Technora® • Carbon Fiber • Fiberglass FIBER-LINE® PRODUCTS ADDED BY EXTRUSION • Strength members • Tracer-wire • Micro-cable • Ruggedized cable Our Polymer Offering • EPC • ETFE • FEP • Hytrel • PFA • Polyethylene • Polypropylene • Polyurethane • PVC • PVDF EXTRUSION FIBERS PROCESSES PRODUCTS FIBER OPTICAL CABLES MOVING HIGH PERFORMANCE FIBERS FORWARD This data is provided for informational purposes only, and does not constitute a specification.
https://www.avient.com/sites/default/files/2020-12/resound-om-technical-bulletin_0.pdf
Peel (N/mm) 3.2 2.9 3.2 3.2 3.1 3.2 3.1 Failure Mode Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive KEY PROPERTIES AND OVERMOLD PERFORMANCE reSound™ OM 5510 grades for overmolding onto PP and reSound OM 5520 for ABS reSound OM 5510-30N reSound OM 5510-45N reSound OM 5510-60N reSound OM 5510-70N reSound OM 5520-55N Bio-derived Content (%) 40% 40% 50% 50% 49% Hardness, Shore A 30 45 60 70 54 Specific Gravity 0.88 0.88 0.89 0.89 0.95 50% Modulus, PSI 96 153 247 384 258 100% Modulus, PSI 137 251 343 462 353 Tensile Strength, PSI 264 438 625 608 637 Elongation, % 280 215 306 271 319 Tear Strength, PLI 58 84 109 132 146 OM Substrate PP PP PP PP ABS OM Avg.
https://www.avient.com/sites/default/files/2020-08/tpes-for-automotive-industry-bulletin.pdf
A fresh look at material options helps align key properties with optimal performance for today’s vehicles.
https://www.avient.com/sites/default/files/2020-09/stan-tone-pep-et-product-bulletin.pdf
KEY CHARACTERISTICS • Available in varying viscosity from liquid to paste • Streamlines production and enhances quality APPLICATIONS Stan-Tone PEP and Stan-Tone ET dispersions are suitable for use in a variety of applications, including: • Cast urethane wheels • Industrial rollers • Flexible & rigid foams • Adhesives • Laminates • Pultrusion • Glass reinforced composites • Coated fabrics Stan-Tone Code Pigment Type Approx. % Pigment Specific Gravity Color Index Lightfastness WHITE 10PEP03 Titanium Dioxide, Rutile 60 2.06 PW-6 I/O YELLOW 12PEP01 Diarylide AAOT GS 20 1.24 PY-14 I 12PEP03 Diarylide HR RS 25 1.23 PY-83 I/O (Mass) 13PEP02 Isoindolinone RS 25 1.31 PY-110 I/O 13PEP03 Benzimidazolone GS 25 1.25 PY-151 I/O (Mass) 81PEP01 Iron Oxide 60 2.07 PY-42 I/O ORANGE 15PEP03 Benzimidazolone RS 25 1.27 PO-36 I/O RED 23PEP04 Quinacridone BS 25 1.24 PV-19 I/O 23PEP06 Specialty Naphthol BS 25 1.23 PR-170 I/O (Mass) C 25PEP01 Red 2B, Ca Salt BS 17 1.26 PR-48:2 I/O (Mass) 28PEP01 Red 2B, Ba Salt YS 25 1.32 PR48:1 I/O (Mass) 82PEP01 Iron Oxide, Light YS 27 1.5 PR-101 I/O 82PEP02 Iron Oxide, Light BS 60 2.2 PR-101 I/O 82PEP04 Iron Oxide, Light VYS 60 2.2 PR-101 I/O 82PEP05 Iron Oxide, Dark VBS 60 2.21 PR-101 I/O BLUE 40PEP01 Phthalocyanine GS 25 1.27 PB-15:3 I/O 40PEP05 Phthalocyanine RS 25 1.27 PB-15 I/O 42PEP02 Ultramarine 35 1.44 PB-29 I/O 49PEP01 Cobalt 31 1.54 PB-28 I/O GREEN 50PEP01 Phthalocyanine BS 16 1.28 PG-7 I/O 50PEP03 Phthalocyanine YS 16 1.28 PG-7 I/O 59PEP02 Chromium Oxide 70 2.6 PG-17 I/O VIOLET/MAGENTA 24PEP03 Quinacridone Violet 20 1.24 PV-19 I/O 24PEP04 Ultramarine Violet 50 1.69 PV-15 I/O 24PEP05 Quinacridone Magenta 20 1.24 PR-122 I/O 24PEP06 Benzimidazolone 20 1.23 PV-32 I/O 24PEP07 Carbazole Violet 13 1.22 PV-23 I/O BROWN/TAN 83PEP01 Iron Oxide, Light 34 1.6 PBr-6 I/O 83PEP02 Iron Oxide, Dark 29 1.51 PBr-6 I/O BLACK 90PEP01 Furnace - High Jet 24 1.3 PBk-7 I/O 90PEP04 Furnace - Medium 17 1.27 PBk-7 I/O 90PEP05 Iron Oxide 33 1.58 PBk-11 I/O POLYESTER URETHANE PASTE COLORANTS (PEP) Stan-Tone Code Pigment Type Approx. % Pigment Specific Gravity Color Index Lightfastness WHITE 10ET03 Titanium Dioxide, Rutile 56 1.74 PW-6 I/O YELLOW 12ET01 Diarylide AAOT GS 40 1.15 PY-14 I 12ET03 Diarylide HR RS 20 1.07 PY-83 I/O (Mass) 13ET02 Isoindolinone RS 20 1.11 PY-110 I/O 13ET03 Benzimidazolone GS 20 1.08 PY-151 I/O (Mass) 81ET01 Iron Oxide 60 1.84 PY-42 I/O ORANGE 15ET03 Benzimidazolone RS 25 1.11 PO-36 I/O RED 20ET01 Red Lake C YS 30 1.16 PR-53 I 22ET01 Lithol Rubine BS 30 1.17 PR-57:1 I 23ET04 Quinacridone BS 15 1.05 PV-19 I/O 23ET06 Specialty Naphthol BS 30 1.09 PR-170 I/O (Mass) C 25ET01 Red 2B, Ca Salt BS 29 1.15 PR-48:2 I/O (Mass) 28ET01 Red 2B, Ba Salt YS 30 1.18 PR-48:1 I/O (Mass) 82ET01 Iron Oxide, Light BS 60 1.94 PR-101 I/O 82ET02 Iron Oxide, Dark VBS 60 1.95 PR-101 I/O 82ET04 Iron Oxide, Light VYS 60 1.94 PR-101 I/O BLUE 40ET01 Phthalocyanine GS 25 1.11 PB-15:3 I/O 40ET05 Phthalocyanine RS 20 1.09 PB-15 I/O 42ET02 Ultramarine 55 1.46 PB-29 I/O 49ET01 Cobalt 65 2.02 PB-28 I/O GREEN 50ET01 Phthalocyanine BS 30 1.2 PG-7 I/O 50ET03 Phthalocyanine YS 25 1.16 PG-7 I/O 59ET01 Chromium Oxide 65 2.12 PG-17 I/O VIOLET/MAGENTA 24ET03 Quinacridone Violet 20 1.08 PV-19 I/O 24ET04 Ultramarine Violet 60 1.66 PV-15 I/O 24ET05 Quinacridone Magenta 20 1.08 PR-122 I/O 24ET06 Benzimidazolone 25 1.08 PV-32 I/O 24ET07 Carbazole Violet 13 1.05 PV-23 I/O BROWN/TAN 83ET01 Iron Oxide, Light 64 2.02 PBr-6 I/O 83ET02 Iron Oxide, Dark 60 1.9 PBr-6 I/O BLACK 90ET04 Furnace - Medium 22 1.12 PBk-7 I/O 90ET05 Iron Oxide 60 1.9 PBk-11 I/O POLYETHER URETHANE PASTE COLORANTS (ET) PEP/ET RS = Red Shade YS = Yellow Shade VYS = Very Yellow Shade BS = Blue Shade VBS = Very Blue Shade GS = Green Shade HR = Heat-Resistant LIGHTFASTNESS I = Indoor Only I/O = Indoor or Outdoor Mass = Outdoor Masstone Application Only C = Some Caution Advised www.avient.com Copyright © 2020, Avient Corporation.
https://www.avient.com/sites/default/files/2024-09/Maxxam FR Polyolefin Formulations - Product Overview.pdf
KEY CHARACTERISTICS • UL 94 V-2, V-0, 5VA ratings and elevated RTI ratings • GWFI (IEC 60695-11-10) up to 960°C • Comparative Tracking Index (CTI) PLC 0, 600V ratings • Injection molding and extrusion grades • Non-halogen grades available • Low dielectric performance with selected formulations • Good recyclability • Colorable MARKETS & APPLICATIONS Applications that require flame retardant performance including: • Transportation: Interior components, seat components, door panels, aircraft interiors, railway interiors, boat interiors • Construction & Building Materials: Cable insulation, pipes and fittings, insulation materials • Consumer – Appliance casings, housings, covers, fume hoods, battery packages, furniture • Industrial Equipment: Machine housings • Energy, Electrical & Electronic, E-Mobility: Battery frames, electrical housings, connectors • Telecommunication: Cable management • Packaging: Transportation of sensitive goods • Healthcare: Medical device housings and components PRODUCT BULLETIN MAXXAM FR FLAME RETARDANT POLYOLEFIN FORMULATIONS Non-halogenated Halogenated PP Homopolymer Copolymer Homopolymer Copolymer Unit Unfilled Glass Fiber Mineral Unfilled Glass Fiber Mineral Unfilled Glass Fiber Mineral Unfilled Glass Fiber Mineral Characteristic Talcum Talcum Talcum Talcum Reinforcement Mass-% 0 5–30 5–30 0 20–30 5-20 0 5–30 5–20 0 5–30 5–20 Colorable – ++ ++ + ++ ++ + + + + + + + Density g/cm3 0,9–1,08 1,28–1,37 0,98–1,55 0,92–1,06 1,25–1,35 0,95–1,28 0,94–1,04 1,3–1,55 1,01–1,42 0,96–1,01 0,94–1,58 0,95–1,46 Tensile Strength MPa 25–30 30–70 25–35 16–22 40–65 15–25 25-–35 30–70 25–35 20–24 20–55 -25 E-Modulus (Tensile) MPa 1600–2500 2500–8200 2500–4000 800–1200 2000–8000 1600–3000 1300–2000 3000–8900 1900–3500 1000–1400 1200–7500 1500–3000 Izod Impact 23°C notched % 2,0–4,5 3,5–7,5 2,5–4,5 5–40 2,5–18 2,5–6 2,5–4,5 3,5–6,0 3,0–7,0 4,0–40 2,5–16 2,5–10 Max.
https://www.avient.com/sites/default/files/resources/Overmolding_of_Thermoplastic_Elastomers_Engineered_solutions_for_consumer_product_differentiation.pdf
Properly designed deep undercuts however are possible with over-mold compounds if an advancing core is used when the mold opens and the part does not have sharp corners and the elastomer is allowed to deflect as it is ejected.
https://www.avient.com/sites/default/files/2020-10/2020-gravi-tech-design-guide-.pdf
KEY CHARACTERISTICS The primary features and benefits of Gravi-Tech formulations are: • Customized density, offering a wide range of specific gravities from 1.5 to 11 gm/cm3 • Broad modulus range, from very flexible to very rigid grades • Corrosion resistance, withstanding oxidation for long-term use and benefit • Chemical resistance, withstanding fuels, oils and other harsh chemicals Additional features include: • Design flexibility and processing ease • Good impact strength • Elevated heat deflection temperature 6 Gravi-Tech Design Guide 7 CHAPTER 2 | PROCESS SETTINGS Density Modified Formulations Gravi-Tech™ polymer-metal composites are high-density materials developed as thermoplastic-based alternatives to lead and other traditional metals.
End of Fill Part Length Dynamic Pressure Hydrostatic Pressure P re ss u re Gate End Part FIGURE 61 - Deflection Equations H F WLMax Deflection: 0.002" (0.05mm) 1 = W • H3 12 _______ bending = F • L3 48 • E • I _______ 4 πtc = h2 1n π2 • a • Tmelt – Tcoolant Teject – Tcoolant tc = D2 1.61n 23.1 • a Tmelt – Tcoolant Teject – Tcoolant a = k p * Cp Qmoldings = mmoldings • Cp • Tme • Cplt – Teject cooling nlines moldings tc cooling Vcoolant line nmax, coolant • Pcoolant • Cp, coolant Dmax = 4 • Pcoolant • Vcoolant π • µcoolant • 4000 Dmin = Pcoolant • Lline • V2 coolant 5 10π • ∆Pline 4 πtc = h2 1n π2 • a • Tmelt – Tcoolant Teject – Tcoolant tc = D2 1.61n 23.1 • a Tmelt – Tcoolant Teject – Tcoolant a = k p * Cp Qmoldings = mmoldings • Cp • Tme • Cplt – Teject cooling nlines moldings tc cooling Vcoolant line nmax, coolant • Pcoolant • Cp, coolant Dmax = 4 • Pcoolant • Vcoolant π • µcoolant • 4000 Dmin = Pcoolant • Lline • V2 coolant 5 10π • ∆Pline 4 πtc = h2 1n π2 • a • Tmelt – Tcoolant Teject – Tcoolant tc = D2 1.61n 23.1 • a Tmelt – Tcoolant Teject – Tcoolant a = k p * Cp Qmoldings = mmoldings • Cp • Tme • Cplt – Teject cooling nlines moldings tc cooling Vcoolant line nmax, coolant • Pcoolant • Cp, coolant Dmax = 4 • Pcoolant • Vcoolant π • µcoolant • 4000 Dmin = Pcoolant • Lline • V2 coolant 5 10π • ∆Pline FIGURE 60 - Pressure vs Part Length FIGURE 61 - Deflection equations FIGURE 62 - For Plate Shaped Parts FIGURE 63 - For Cylindrical Shaped Parts Design Guide 49 • MMoldings = Combined mass of molded parts • Cp = Specific Heat of the material Step 3 – Heat Removal Rate • Nlines = The total number of independent cooling lines there are in the mold • tc = The cooling time required by the part (Determined in step 1) Step 4 – Coolant Volumetric Flow Rate • ΔTMax,Coolant = Change in coolant Temperature During Molding (1°C) • ρCoolant = Density of coolant • CP = Specific heat of coolant Step 5 – Determine Cooling Line Diameter • ρCoolant = Density of coolant • VCoolant = Volumetric flow rate of coolant • μCoolant = Viscosity of coolant • ΔPline = Max pressure drop per line (Usually equals half of the pump capacity) • LLine = Length of the cooling lines COOLING LINE SPACING 4 πtc = h2 1n π2 • a • Tmelt – Tcoolant Teject – Tcoolant tc = D2 1.61n 23.1 • a Tmelt – Tcoolant Teject – Tcoolant a = k p * Cp Qmoldings = mmoldings • Cp • Tme • Cplt – Teject cooling nlines moldings tc cooling Vcoolant line nmax, coolant • Pcoolant • Cp, coolant Dmax = 4 • Pcoolant • Vcoolant π • µcoolant • 4000 Dmin = Pcoolant • Lline • V2 coolant 5 10π • ∆Pline 4 πtc = h2 1n π2 • a • Tmelt – Tcoolant Teject – Tcoolant tc = D2 1.61n 23.1 • a Tmelt – Tcoolant Teject – Tcoolant a = k p * Cp Qmoldings = mmoldings • Cp • Tme • Cplt – Teject cooling nlines moldings tc cooling Vcoolant line nmax, coolant • Pcoolant • Cp, coolant Dmax = 4 • Pcoolant • Vcoolant π • µcoolant • 4000 Dmin = Pcoolant • Lline • V2 coolant 5 10π • ∆Pline 4 πtc = h2 1n π2 • a • Tmelt – Tcoolant Teject – Tcoolant tc = D2 1.61n 23.1 • a Tmelt – Tcoolant Teject – Tcoolant a = k p * Cp Qmoldings = mmoldings • Cp • Tme • Cplt – Teject cooling nlines moldings tc cooling Vcoolant line nmax, coolant • Pcoolant • Cp, coolant Dmax = 4 • Pcoolant • Vcoolant π • µcoolant • 4000 Dmin = Pcoolant • Lline • V2 coolant 5 10π • ∆Pline 4 πtc = h2 1n π2 • a • Tmelt – Tcoolant Teject – Tcoolant tc = D2 1.61n 23.1 • a Tmelt – Tcoolant Teject – Tcoolant a = k p * Cp Qmoldings = mmoldings • Cp • Tme • Cplt – Teject cooling nlines moldings tc cooling Vcoolant line nmax, coolant • Pcoolant • Cp, coolant Dmax = 4 • Pcoolant • Vcoolant π • µcoolant • 4000 Dmin = Pcoolant • Lline • V2 coolant 5 10π • ∆Pline 4 πtc = h2 1n π2 • a • Tmelt – Tcoolant Teject – Tcoolant tc = D2 1.61n 23.1 • a Tmelt – Tcoolant Teject – Tcoolant a = k p * Cp Qmoldings = mmoldings • Cp • Tme • Cplt – Teject cooling nlines moldings tc cooling Vcoolant line nmax, coolant • Pcoolant • Cp, coolant Dmax = 4 • Pcoolant • Vcoolant π • µcoolant • 4000 Dmin = Pcoolant • Lline • V2 coolant 5 10π • ∆Pline 4 πtc = h2 1n π2 • a • Tmelt – Tcoolant Teject – Tcoolant tc = D2 1.61n 23.1 • a Tmelt – Tcoolant Teject – Tcoolant a = k p * Cp Qmoldings = mmoldings • Cp • Tme • Cplt – Teject cooling nlines moldings tc cooling Vcoolant line nmax, coolant • Pcoolant • Cp, coolant Dmax = 4 • Pcoolant • Vcoolant π • µcoolant • 4000 Dmin = Pcoolant • Lline • V2 coolant 5 10π • ∆Pline 2D < H line < 5D H line < W line < 2H line FIGURE 70 - Cooling Line Spacing FIGURE 64 - Heat Transfer Equation FIGURE 65 - Total Cooling for Mold FIGURE 66 - Cooling Required by Each Line FIGURE 68 - Max Diameter Equation FIGURE 69 - Min Diameter Equation FIGURE 67 - Volumetric Flow Rate Equation 50 Gravi-Tech ADHESIVE ADVANTAGES DISADVANTAGES Cyanoacrylate Rapid, one-part process Various viscosities Can be paired with primers for polyolefins Poor strength Low stress crack resistance Low chemical resistance Epoxy High strength Compatible with various substrates Tough Requires mixing Long cure time Limited pot life Exothermic Hot Melt Solvent-free High adhesion Different chemistries for different substrates High temp dispensing Poor high temp performance Poor metal adhesion Light Curing Acrylic Quick curing One component Good environmental resistance Oxygen sensitive Light source required Limited curing configurations Polyurethane High cohesive strength Impact and abrasion resistance Poor high heat performance Requires mixing Silicone Room temp curing Good adhesion Flexible Performs well in high temps Low cohesive strength Limited curing depth Solvent sensitive No-Mix Acrylic Good peel strength Fast cure Adhesion to variety of substrates Strong odor Exothermic Limited cure depth Design Guide 51 Bibliography 1.
https://www.avient.com/sites/default/files/2020-09/stat-tech-tri-fold-processing-guide.pdf
Other key processing parameters are slow injection speeds and low back pressures. ** Avoid processing for a resin-rich surface.
https://www.avient.com/sites/default/files/2022-05/ColorMatrix Amosorb Solo Technical Bulletin.pdf
Key: A = 4% Amosorb SolO2-2 + Fortis Amber-1 @ 0.09%; B = 50% Regrind A + 50% Virgin PET; C = 50% Regrind A + 50% Virgin PET + Fortis Amber @ 0.045% REGRIND COMBINATION STUDY - METHODOLOGY 1.844.4AVIENT www.avient.com Copyright © 2022, Avient Corporation.