https://www.avient.com/sites/default/files/2020-09/avient-candidates-data-privacy-notice-final-portuguese.pdf
A Avient pode recolher suas informações pessoais quando você se candidata das seguintes formas: • On-line.
Quando você se candidata on-line usando os Sites; • Por e-mail.
Suas informações pessoais podem ser compartilhadas conosco por terceiros, como recrutadores e referências; • Off-line.
https://www.avient.com/sites/default/files/2022-08/Avient Candidates Data Privacy Notice Final - Portuguese.pdf
A Avient pode recolher suas informações pessoais quando você se candidata das seguintes formas: • On-line.
Quando você se candidata on-line usando os Sites; • Por e-mail.
Suas informações pessoais podem ser compartilhadas conosco por terceiros, como recrutadores e referências; • Off-line.
https://www.avient.com/sites/default/files/resources/Proxy%2520Statement%2520for%2520Web%2520Hosting.pd_.pdf
Kunkle Important Notice Regarding the Availability of Proxy Materials for the Annual Meeting to be held on May 16, 2019: The proxy statement, proxy card and annual report to shareholders for the fiscal year ended December 31, 2018 are available at our Internet website, www.polyone.com, on the “Investor Relations” page.
https://www.avient.com/sites/default/files/2020-07/rpet-solutions-brochure.pdf
Thread pulls; blow line jams ColorMatrix™ EZE™ Slip Agent Process aid to reduce surface friction, allowing for higher levels of rPET to be used.
Improves mold release resulting in reduced thread pulls or blow line jams while supporting faster cycle times and production rates.
https://www.avient.com/sites/default/files/2023-01/ECCOH XL Cross-Linkable Solutions _8001_ Product Bulletin.pdf
This technology offers manufacturing efficiencies versus other crosslinking methods: • Reduction in logistics management: No secondary steps after manufacturing; no need for E-beam radiation for effective crosslinking • Rapid ambient curing: Typically in less than 15 days depending on the climatic condition, wall thickness and catalyst level • No additional capital investment: The material can be processed on a conventional extrusion line • Easy handling: ECCOH XL 8001 is used with 2.5–5% of catalyst masterbatch • No pre-drying: No need to pre-dry the material if it is stored correctly PRODUCT BULLETIN KEY CHARACTERISTICS Avient’s ECCOH line of highly flame retardant, non-halogenated materials limits the emission of corrosive gases when burning.
https://www.avient.com/center-of-excellence/avient-europe-middle-east-and-africa
FIBER-LINE INTERNATIONAL B.V.
FIBER-LINE INTERNATIONAL B.V.
https://www.avient.com/sites/default/files/2020-09/edgetek-processing-guide.pdf
Venting • Place vents at the end of fill and anywhere potential knit/weld lines will occur. • All vents need to be vented to atmosphere. • For circular parts, full perimeter venting is recommended. • Cut vent depths to: - PPA Compounds: 0.0015"–0.0025" depth and 0.250" width - PC Compounds: 0.002"–0.004" depth and 0.250" width - PSU Compounds: 0.003"–0.004" depth and 0.250" width - PES Compounds: 0.003"–0.004" depth and 0.250" width - PPS Compounds: 0.002"–0.003" depth and 0.250" width - Acetal Compounds: 0.0015" minimum depth and 0.250" width - PEEK Compounds: 0.002"–0.004" depth and 0.250" width - Nylon Compounds: 0.002" minimum depth and 0.250" width • Increase vent depth to 0.060" (1.5mm) at 0.250" (4.0mm) away from the cavity and vent to atmosphere.
PROBLEM CAUSE SOLUTION Excessive Shrink Too much orientation • Increase packing time and pressure • Increase hold pressure • Decrease melt temperature • Decrease mold temperature • Decrease injection speed • Decrease screw rpm • Increase venting • Increase cooling time Not Enough Shrink Too little orientation • Decrease packing pressure and time • Decrease hold pressure • Increase melt temperature • Increase mold temperature • Increase injection speed • Increase screw rpm • Decrease cooling time Burning Melt and/or mold temperature too hot Mold design Moisture • Decrease nozzle and barrel temperatures • Decrease mold temperature • Decrease injection speed • Clean, widen and increase number of vents • Increase gate size or number of gates • Verify material is dried at proper conditions Nozzle Drool Nozzle temperature too hot • Decrease nozzle temperature • Decrease back pressure • Increase screw decompression • Verify material has been dried at proper conditions Weld Lines Melt front temperatures too low Mold design • Increase pack and hold pressure • Increase melt temperature • Increase vent width and locations • Increase injection speed • Increase mold temperature • Decrease injection speed • Increase gate size • Perform short shots to determine fill pattern and verify proper vent location • Add vents and/or false ejector pin • Move gate location Warp Excessive orientation Mold design • Increase cooling time • Increase melt temperature • Decrease injection pressure and injection speed • Increase number of gates Sticking in Mold Cavities are overpacked Mold design Part is too hot • Decrease injection speed and pressure • Decrease pack and hold pressure • Decrease nozzle and barrel temperatures • Decrease mold temperature • Increase cooling time • Increase draft angle • Decrease nozzle and barrel temperatures • Decrease mold temperature • Increase cooling time TROUBLESHOOTING RECOMMENDATIONS PROBLEM CAUSE SOLUTION Incomplete Fill Melt and/or mold temperature too cold Mold design Shot Size • Increase nozzle and barrel temperatures • Increase mold temperature • Increase injection speed • Increase pack and hold pressure • Increase nozzle tip diameter • Check thermocouples and heater bands • Enlarge or widen vents and increase number of vents • Check that vents are unplugged • Check that gates are unplugged • Enlarge gates and/or runners • Perform short shots to determine fill pattern and verify proper vent location • Increase wall thickness to move gas trap to parting line • Increase shot size • Increase cushion Brittleness Melt temperature too low Degraded/Overheated material Gate location and/or size • Increase melt temperature • Increase injection speed • Measure melt temperature with pyrometer • Decrease melt temperature • Decrease back pressure • Use smaller barrel/excessive residence time • Relocate gate to nonstress area • Increase gate size to allow higher flow speed and lower molded-in stress Fibers on Surface (Splay) Melt temperature too low Insufficient packing • Increase melt temperature • Increase mold temperature • Increase injection speed • Increase pack and hold pressure, and time • Increase shot size • Increase gate size Sink Marks Part geometry too thick Melt temperature too hot Insufficient material volume • Reduce wall thickness • Reduce rib thickness • Decrease nozzle and barrel temperatures • Decrease mold temperature • Increase shot size • Increase injection rate • Increase packing pressure • Increase gate size Flash Injection pressure too high Excess material volume Melt and/or mold temperature too hot • Decrease injection pressure • Increase clamp pressure • Decrease injection speed • Increase transfer position • Decrease pack pressure • Decrease shot size • Decrease injection speed • Decrease nozzle and barrel temperatures • Decrease mold temperature • Decrease screw speed TROUBLESHOOTING RECOMMENDATIONS www.avient.com Copyright © 2020, Avient Corporation.
https://www.avient.com/sites/default/files/2020-09/lubrione-processing-guide.pdf
Venting • Place vents at the end of fill and anywhere potential knit/weld lines will occur. • All vents need to be vented to atmosphere. • For circular parts, full perimeter venting is recommended. • Cut vent depths to: - PPA Compounds: 0.0015"–0.0025" depth and 0.250" width - PC Compounds: 0.002"–0.004" depth and 0.250" width - PSU Compounds: 0.003"–0.004" depth and 0.250" width - PES Compounds: 0.003"–0.004" depth and 0.250" width - PPS Compounds: 0.002"–0.003" depth and 0.250" width - Acetal Compounds: 0.0015" minimum depth and 0.250" width - PEEK Compounds: 0.002"–0.004" depth and 0.250" width - Nylon Compounds: 0.002" minimum depth and 0.250" width • Increase vent depth to 0.060" (1.5mm) at 0.250" (4.0mm) away from the cavity and vent to atmosphere.
PROBLEM CAUSE SOLUTION Incomplete Fill Melt and/or mold temperature too cold Mold design Shot Size • Increase nozzle and barrel temperatures • Increase mold temperature • Increase injection speed • Increase pack and hold pressure • Increase nozzle tip diameter • Check thermocouples and heater bands • Enlarge or widen vents and increase number of vents • Check that vents are unplugged • Check that gates are unplugged • Enlarge gates and/or runners • Perform short shots to determine fill pattern and verify proper vent location • Increase wall thickness to move gas trap to parting line • Increase shot size • Increase cushion Brittleness Melt temperature too low Degraded/Overheated material Gate location and/or size • Increase melt temperature • Increase injection speed • Measure melt temperature with pyrometer • Decrease melt temperature • Decrease back pressure • Use smaller barrel/excessive residence time • Relocate gate to nonstress area • Increase gate size to allow higher flow speed and lower molded-in stress Fibers on Surface (Splay) Melt temperature too low Insufficient packing • Increase melt temperature • Increase mold temperature • Increase injection speed • Increase pack and hold pressure, and time • Increase shot size • Increase gate size Sink Marks Part geometry too thick Melt temperature too hot Insufficient material volume • Reduce wall thickness • Reduce rib thickness • Decrease nozzle and barrel temperatures • Decrease mold temperature • Increase shot size • Increase injection rate • Increase packing pressure • Increase gate size Flash Injection pressure too high Excess material volume Melt and/or mold temperature too hot • Decrease injection pressure • Increase clamp pressure • Decrease injection speed • Increase transfer position • Decrease pack pressure • Decrease shot size • Decrease injection speed • Decrease nozzle and barrel temperatures • Decrease mold temperature • Decrease screw speed TROUBLESHOOTING RECOMMENDATIONS PROBLEM CAUSE SOLUTION Excessive Shrink Too much orientation • Increase packing time and pressure • Increase hold pressure • Decrease melt temperature • Decrease mold temperature • Decrease injection speed • Decrease screw rpm • Increase venting • Increase cooling time Not Enough Shrink Too little orientation • Decrease packing pressure and time • Decrease hold pressure • Increase melt temperature • Increase mold temperature • Increase injection speed • Increase screw rpm • Decrease cooling time Burning Melt and/or mold temperature too hot Mold design Moisture • Decrease nozzle and barrel temperatures • Decrease mold temperature • Decrease injection speed • Clean, widen and increase number of vents • Increase gate size or number of gates • Verify material is dried at proper conditions Nozzle Drool Nozzle temperature too hot • Decrease nozzle temperature • Decrease back pressure • Increase screw decompression • Verify material has been dried at proper conditions Weld Lines Melt front temperatures too low Mold design • Increase pack and hold pressure • Increase melt temperature • Increase vent width and locations • Increase injection speed • Increase mold temperature • Decrease injection speed • Increase gate size • Perform short shots to determine fill pattern and verify proper vent location • Add vents and/or false ejector pin • Move gate location Warp Excessive orientation Mold design • Increase cooling time • Increase melt temperature • Decrease injection pressure and injection speed • Increase number of gates Sticking in Mold Cavities are overpacked Mold design Part is too hot • Decrease injection speed and pressure • Decrease pack and hold pressure • Decrease nozzle and barrel temperatures • Decrease mold temperature • Increase cooling time • Increase draft angle • Decrease nozzle and barrel temperatures • Decrease mold temperature • Increase cooling time TROUBLESHOOTING RECOMMENDATIONS Note: These are general processing conditions.
https://www.avient.com/sites/default/files/2020-12/artisan-thermoplastics-nylon-processing-guide.pdf
Place vents at the end of fill and anywhere potential knit/weld lines will occur 2.
Cut vent depths to 0.0007″–0.0015″ Draft Angle Maintain a minimum draft angle of 1° per side 4 Artisan Pre-Colored Thermoplastics Troubleshooting Recommendations Problem Cause Solution Incomplete Fill Melt and/or mold too cold • Increase nozzle and barrel temperatures • Increase mold temperature • Increase injection rate • Check thermocouples and heater bands Shot size • Increase shot size • Adjust transfer position to 98% full • Increase cushion Mold design • Enlarge or widen vents and increase number of vents • Check that vents are unplugged • Check that gates are unplugged • Enlarge gates and/or runners • Perform short shots to determine fill pattern and verify proper vent location • Increase wall thickness to move gas trap to parting line Brittleness Degraded/overheated material • Decrease melt temperature • Decrease back pressure • Use smaller barrel • Decrease injection speed Gate location and/or size • Relocate gate to non-stress area • Increase gate size to allow higher flow rate and lower molded-in stress Wet material • Check moisture.
Sink Marks Melt too hot • Decrease nozzle and barrel temperatures • Decrease mold temperature Insufficient material volume • Adjust transfer position • Increase shot size • Increase injection rate • Increase packing pressure Part geometry too thick • Reduce wall thickness • Reduce rib thickness Processing Guide 5 Troubleshooting Recommendations Problem Cause Solution Flash Injection pressure too high • Decrease injection pressure • Increase clamp pressure • Decrease injection rate • Increase transfer position Excess material volume • Adjust transfer position • Decrease pack pressure • Decrease shot size • Decrease injection rate Melt or mold too hot • Decrease nozzle and barrel temperatures • Decrease mold temperature Loose clamp • Reset mold height • Increase clamp tonnage Shrink Too much shrink • Increase cooling time • Decrease mold temperature Too little shrink • Decrease cooling time • Increase mold temperature Burning Process related • Decrease nozzle and barrel temperatures • Decrease mold temperature • Decrease injection rate • Reduce decompression Mold design • Clean, widen and increase number of vents • Increase gate size to reduce shear Wet material • Verify material is dried at proper condition Nozzle Drool Nozzle temperature too hot • Decrease nozzle temperature • Decrease back pressure • Increase screw decompression • Verify material has been dried at proper conditions Incorrect nozzle • Use reverse taper tip Weld Lines Melt front temperatures are too low • Increase injection rate • Increase pack and hold pressure • Increase melt temperature • Increase mold temperature Mold design • Increase gate size • Identify end of fill pattern and verify proper vent location • Add vents or increase vent width • Move gate location 6 Artisan Pre-Colored Thermoplastics Problem Cause Solution Warp Process related • Increase melt temp • Reduce injection speed • Increase pack pressure • Increase pack time • Decrease mold temperature • Increase cool time Mold design • Non-uniform mold cooling Part design • Non-uniform wall thickness Thermolator incorrect temperature • Check settings • Inspect thermocouple Sticking in Mold Overfilled cavity • Decrease injection rate and pressure • Decrease hold pressure • Adjust transfer position • Decrease nozzle and barrel temperatures • Decrease mold temperature • Decrease cooling time Part too hot • Decrease barrel temperature • Decrease mold temperature • Increase cooling time Mold design • Increase draft angle • Polish cores in direction of ejection Black Specks Contamination • Purge machine Degradation • Reduce melt temperature • Reduce screw speed • Reduce back pressure Machine related • Check for wear on screw, barrel or check ring Delamination Process related • Increase melt temperature • Decrease injection speed • Purge barrel to eliminate material contamination Mold design • Reduce sharp corners in material flow path • Increase venting Troubleshooting Recommendations Processing Guide 7 Troubleshooting Recommendations Problem Cause Solution Discoloration Oversheared material • Decrease melt temperature • Decrease injection speed • Reduce residence time Mold design • Increase gate sizing Dry material • Check moisture of material to ensure it is within the recommended moisture percentage for molding 1.844.4AVIENT www.avient.com Copyright © 2020, Avient Corporation.
https://www.avient.com/sites/default/files/2021-11/artisan-ar7300-pre-colored-formulation-processing-guide.pdf
Venting • Place vents at the end of fill and anywhere potential knit/weld lines will occur. • All vents need to be vented to atmosphere. • For circular parts, full perimeter venting is recommended. • Cut vent depths to 0.0007″–0.0015″.
PROBLEM CAUSE SOLUTION Incomplete Fill Melt and/or mold temperature too cold • Increase nozzle and barrel temperatures • Increase mold temperature • Increase injection rate • Check thermocouples and heater bands Shot size • Increase shot size • Adjust transfer position to 98% full • Increase cushion Mold design • Enlarge or widen vents and increase number of vents • Check that vents are unplugged • Check that gates are unplugged • Enlarge gates and/or runners • Perform short shots to determine fill pattern and verify proper vent location • Increase wall thickness to move gas trap to parting line Brittleness Degraded/overheated material • Decrease melt temperature • Decrease back pressure • Use smaller barrel • Decrease injection speed Gate location and/or size • Relocate gate to non-stress area • Increase gate size to allow higher flow rate and lower molded-in stress Wet material • Check moisture.
Sink Marks Melt too hot • Decrease nozzle and barrel temperatures • Decrease mold temperature Insufficient material volume • Adjust transfer position • Increase shot size • Increase injection rate • Increase packing pressure Part geometry too thick • Reduce wall thickness • Reduce rib thickness TROUBLESHOOTING RECOMMENDATIONS PROBLEM CAUSE SOLUTION Flash Injection pressure too high • Decrease injection pressure • Increase clamp pressure • Decrease injection rate • Increase transfer position Excess material volume • Adjust transfer position • Decrease pack pressure • Decrease shot size • Decrease injection rate Melt and/or mold temperature too hot • Decrease nozzle and barrel temperatures • Decrease mold temperature Loose clamp • Reset mold height • Increase clamp tonnage Shrink Too much shrink • Increase cooling time • Decrease mold temperature Too little shrink • Decrease cooling time • Increase mold temperature Burning Process related • Decrease nozzle and barrel temperatures • Decrease mold temperature • Decrease injection rate • Reduce decompression Mold design • Clean, widen and increase number of vents • Increase gate size to reduce shear Wet material • Verify material is dried at proper condition Nozzle Drool Nozzle temperature too hot • Decrease nozzle temperature • Decrease back pressure • Increase screw decompression • Verify material has been dried at proper conditions Incorrect nozzle • Use reverse taper tip Weld Lines Melt front temperatures are too low • Increase injection rate • Increase pack and hold pressure • Increase melt temperature • Increase mold temperature Mold design • Increase gate size • Identify end of fill pattern and verify proper vent location • Add vents or increase vent width • Move gate location TROUBLESHOOTING RECOMMENDATIONS PROBLEM CAUSE SOLUTION Warp Process related • Increase melt temperature • Reduce injection speed • Increase pack pressure • Increase pack time • Decrease mold temperature • Increase cool time Mold design • Non-uniform mold cooling Part design • Non-uniform wall thickness Thermolator incorrect temperature • Check settings • Inspect thermocouple Sticking in Mold Overfilled cavity • Decrease injection rate and pressure • Decrease hold pressure • Adjust transfer position • Decrease nozzle and barrel temperatures • Decrease mold temperature • Decrease cooling time Part too hot • Decrease barrel temperature • Decrease mold temperature • Increase cooling time Mold design • Increase draft angle • Polish cores in direction of ejection Black Specks Contamination • Purge machine Degradation • Reduce melt temperature • Reduce screw speed • Reduce back pressure Machine related • Check for wear on screw, barrel or check ring Delamination Process related • Increase melt temperature • Decrease injection speed • Purge barrel to eliminate material contamination Mold design • Reduce sharp corners in material flow path • Increase venting TROUBLESHOOTING RECOMMENDATIONS PROBLEM CAUSE SOLUTION Discoloration Oversheared material • Decrease melt temperature • Decrease injection speed • Reduce residence time Mold design • Increase gate sizing Dry material • Check moisture of material to ensure it is within the recommended moisture percentage for molding TROUBLESHOOTING RECOMMENDATIONS 1.844.4AVIENT www.avient.com Copyright © 2021, Avient Corporation.