https://www.avient.com/sites/default/files/2023-08/CSP registration supplier guide.pdf
➢ Please check the three boxes for: Invoice- from location, Pay to location and Ship from location. ➢ If you are cxml supplier that plans to also invoice through cxml, please also check the box Advanced invoicing.
https://www.avient.com/sites/default/files/2022-06/Maxxam FR Injection Molding Processing Guide.pdf
Gate type should be selected based on location and part geometry. • Gate diameters should be equivalent to 50–80% of the average wall thickness • A land length of 0.040" (1.0 mm) is recommended • Valve gates can be a source of extreme shear for halogen-based systems.
Increase the vent depth to 0.010" at 0.100" away from the cavity and vent to atmosphere. • Vents should be placed at the intersection of each 90° bend in the runner system off of the cold slug well and vented to atmosphere PROBLEM CAUSE SOLUTION Black Specks Contamination • Purge barrel with general purpose PP • Verify correct nozzle is being used • Pull screw for cleaning Degraded/overheated material • Decrease melt temperature • Decrease back pressure • Decrease injection speed • Use appropriately sized barrel Brittleness Degraded/overheated material • Decrease melt temperature • Decrease back pressure • Decrease injection speed • Use appropriately sized barrel Gate location and/or size • Relocate gate to nonstress area • Increase gate size to allow higher flow rate and lower molded-in stress Burning Process related • Decrease nozzle and barrel temperatures • Decrease mold temperature • Decrease injection rate Mold design • Clean, widen and increase number of vents • Increase gate size to reduce shear Fibers/Minerals on Surface or Uneven Surface Appearance Melt temperature too low • Increase melt temperature • Increase mold temperature • Increase injection speed Insufficient packing • Increase hold pressure and time • Increase shot size Flash Injection pressure too high • Decrease injection pressure • Increase clamp pressure • Decrease injection rate • Increase transfer position Excess material volume • Adjust transfer position • Decrease pack pressure • Decrease shot size • Decrease injection rate Melt and/or mold too hot • Decrease nozzle and barrel temperatures • Decrease mold temperature • Decrease screw speed Loose clamp • Reset mold height • Increase clamp tonnage Troubleshooting Recommendations PROBLEM CAUSE SOLUTION Incomplete Fill Melt and/or mold too cold • Increase nozzle and barrel temperatures • Increase mold temperature • Increase injection rate Mold design • Enlarge or widen vents and increase number of vents • Check that vents are unplugged • Check that gates are unplugged • Enlarge gates and/or runners • Perform short shots to determine fill pattern and verify proper vent location • Increase wall thickness to move gas trap to parting line Shot size • Adjust transfer position to 98% full • Increase shot size Nozzle Drool Nozzle temperature too hot • Decrease nozzle temperature • Decrease back pressure • Increase screw decompression Shrink Too much shrink • Increase cooling time • Decrease mold temperature Too little shrink • Decrease cooling time • Increase mold temperature Sink Marks Part geometry too thick • Reduce wall thickness • Reduce rib thickness Melt too hot • Decrease nozzle and barrel temperatures • Decrease mold temperature Insufficient material volume • Adjust transfer position • Increase shot size • Increase injection rate • Increase packing pressure Troubleshooting Recommendations (continued) PROBLEM CAUSE SOLUTION Sticking in Mold Overfilled cavity • Decrease injection rate and pressure • Decrease hold pressure • Adjust transfer position • Decrease nozzle and barrel temperatures • Decrease mold temperature • Decrease cooling time Mold design • Increase draft angle • Polish cores in direction of ejection Part is too hot • Decrease nozzle and barrel temperatures • Decrease mold temperature • Increase cooling time Warp Process related • Increase cooling time • Increase melt temperature • Increase pack pressure • Increase pack time • Decrease mold temperature Mold design • Inspect for non-uniform mold cooling Part design • Inspect for non-uniform wall thickness Temperature control unit incorrect temperature • Check settings • Inspect thermocouple Weld Lines Melt front temperatures are too low • Increase pack and hold pressure • Increase melt temperature • Increase injection rate • Increase mold temperature Mold design • Increase gate size • Perform short shots to determine fill pattern and verify proper vent location • Add vents and/or false ejector pin • Move gate location 1.844.4AVIENT www.avient.com Copyright © 2022, Avient Corporation.
https://www.avient.com/sites/default/files/2020-10/neu-quality-commitment.pdf
Location(s) North Haven, CT As a valued customer (“Customer”) of NEU Specialty Materials, LLC (“NEU”), NEU is communicating this Quality Commitment to communicate the quality parameters, expectations and risk surrounding quality matters for the products NEU supplies.
The SDS is supplied to the shipping location from where the product is ordered. 5.3 Technical Data Sheets: A Technical Data Sheet will be made available on NEU proprietary technologies upon request. 5.4 Sales Order Confirmation: A documented response confirming acceptance of a Customer purchase order.
Such inquiries by NEU do not transfer supplier control responsibilities to NEU. 8.0 CHANGE NOTIFICATION 8.1 General Notification 8.1.1 NEU will notify the Customer of the following changes to all NEU compounded materials: 8.1.1.1 Product nomenclature 8.1.1.2 Product Specifications 8.1.1.3 Manufacturing site 8.1.2 All notifications will be given to the purchasing contact at the purchasing locations of the products supplied.
https://www.avient.com/sites/default/files/2020-09/edgetek-processing-guide.pdf
Gate type should be selected based on location and part geometry. • Gate diameters equivalent to 50% of the average wall thickness are recommended. • Land lengths of 0.020"–0.035" (0.50mm–0.90mm) are typically recommended.
PROBLEM CAUSE SOLUTION Excessive Shrink Too much orientation • Increase packing time and pressure • Increase hold pressure • Decrease melt temperature • Decrease mold temperature • Decrease injection speed • Decrease screw rpm • Increase venting • Increase cooling time Not Enough Shrink Too little orientation • Decrease packing pressure and time • Decrease hold pressure • Increase melt temperature • Increase mold temperature • Increase injection speed • Increase screw rpm • Decrease cooling time Burning Melt and/or mold temperature too hot Mold design Moisture • Decrease nozzle and barrel temperatures • Decrease mold temperature • Decrease injection speed • Clean, widen and increase number of vents • Increase gate size or number of gates • Verify material is dried at proper conditions Nozzle Drool Nozzle temperature too hot • Decrease nozzle temperature • Decrease back pressure • Increase screw decompression • Verify material has been dried at proper conditions Weld Lines Melt front temperatures too low Mold design • Increase pack and hold pressure • Increase melt temperature • Increase vent width and locations • Increase injection speed • Increase mold temperature • Decrease injection speed • Increase gate size • Perform short shots to determine fill pattern and verify proper vent location • Add vents and/or false ejector pin • Move gate location Warp Excessive orientation Mold design • Increase cooling time • Increase melt temperature • Decrease injection pressure and injection speed • Increase number of gates Sticking in Mold Cavities are overpacked Mold design Part is too hot • Decrease injection speed and pressure • Decrease pack and hold pressure • Decrease nozzle and barrel temperatures • Decrease mold temperature • Increase cooling time • Increase draft angle • Decrease nozzle and barrel temperatures • Decrease mold temperature • Increase cooling time TROUBLESHOOTING RECOMMENDATIONS PROBLEM CAUSE SOLUTION Incomplete Fill Melt and/or mold temperature too cold Mold design Shot Size • Increase nozzle and barrel temperatures • Increase mold temperature • Increase injection speed • Increase pack and hold pressure • Increase nozzle tip diameter • Check thermocouples and heater bands • Enlarge or widen vents and increase number of vents • Check that vents are unplugged • Check that gates are unplugged • Enlarge gates and/or runners • Perform short shots to determine fill pattern and verify proper vent location • Increase wall thickness to move gas trap to parting line • Increase shot size • Increase cushion Brittleness Melt temperature too low Degraded/Overheated material Gate location and/or size • Increase melt temperature • Increase injection speed • Measure melt temperature with pyrometer • Decrease melt temperature • Decrease back pressure • Use smaller barrel/excessive residence time • Relocate gate to nonstress area • Increase gate size to allow higher flow speed and lower molded-in stress Fibers on Surface (Splay) Melt temperature too low Insufficient packing • Increase melt temperature • Increase mold temperature • Increase injection speed • Increase pack and hold pressure, and time • Increase shot size • Increase gate size Sink Marks Part geometry too thick Melt temperature too hot Insufficient material volume • Reduce wall thickness • Reduce rib thickness • Decrease nozzle and barrel temperatures • Decrease mold temperature • Increase shot size • Increase injection rate • Increase packing pressure • Increase gate size Flash Injection pressure too high Excess material volume Melt and/or mold temperature too hot • Decrease injection pressure • Increase clamp pressure • Decrease injection speed • Increase transfer position • Decrease pack pressure • Decrease shot size • Decrease injection speed • Decrease nozzle and barrel temperatures • Decrease mold temperature • Decrease screw speed TROUBLESHOOTING RECOMMENDATIONS www.avient.com Copyright © 2020, Avient Corporation.
https://www.avient.com/sites/default/files/2020-09/lubrione-processing-guide.pdf
Gate type should be selected based on location and part geometry. • Gate diameters equivalent to 50% of the average wall thickness are recommended. • Land lengths of 0.020"–0.035" (0.50mm–0.90mm) are typically recommended.
PROBLEM CAUSE SOLUTION Incomplete Fill Melt and/or mold temperature too cold Mold design Shot Size • Increase nozzle and barrel temperatures • Increase mold temperature • Increase injection speed • Increase pack and hold pressure • Increase nozzle tip diameter • Check thermocouples and heater bands • Enlarge or widen vents and increase number of vents • Check that vents are unplugged • Check that gates are unplugged • Enlarge gates and/or runners • Perform short shots to determine fill pattern and verify proper vent location • Increase wall thickness to move gas trap to parting line • Increase shot size • Increase cushion Brittleness Melt temperature too low Degraded/Overheated material Gate location and/or size • Increase melt temperature • Increase injection speed • Measure melt temperature with pyrometer • Decrease melt temperature • Decrease back pressure • Use smaller barrel/excessive residence time • Relocate gate to nonstress area • Increase gate size to allow higher flow speed and lower molded-in stress Fibers on Surface (Splay) Melt temperature too low Insufficient packing • Increase melt temperature • Increase mold temperature • Increase injection speed • Increase pack and hold pressure, and time • Increase shot size • Increase gate size Sink Marks Part geometry too thick Melt temperature too hot Insufficient material volume • Reduce wall thickness • Reduce rib thickness • Decrease nozzle and barrel temperatures • Decrease mold temperature • Increase shot size • Increase injection rate • Increase packing pressure • Increase gate size Flash Injection pressure too high Excess material volume Melt and/or mold temperature too hot • Decrease injection pressure • Increase clamp pressure • Decrease injection speed • Increase transfer position • Decrease pack pressure • Decrease shot size • Decrease injection speed • Decrease nozzle and barrel temperatures • Decrease mold temperature • Decrease screw speed TROUBLESHOOTING RECOMMENDATIONS PROBLEM CAUSE SOLUTION Excessive Shrink Too much orientation • Increase packing time and pressure • Increase hold pressure • Decrease melt temperature • Decrease mold temperature • Decrease injection speed • Decrease screw rpm • Increase venting • Increase cooling time Not Enough Shrink Too little orientation • Decrease packing pressure and time • Decrease hold pressure • Increase melt temperature • Increase mold temperature • Increase injection speed • Increase screw rpm • Decrease cooling time Burning Melt and/or mold temperature too hot Mold design Moisture • Decrease nozzle and barrel temperatures • Decrease mold temperature • Decrease injection speed • Clean, widen and increase number of vents • Increase gate size or number of gates • Verify material is dried at proper conditions Nozzle Drool Nozzle temperature too hot • Decrease nozzle temperature • Decrease back pressure • Increase screw decompression • Verify material has been dried at proper conditions Weld Lines Melt front temperatures too low Mold design • Increase pack and hold pressure • Increase melt temperature • Increase vent width and locations • Increase injection speed • Increase mold temperature • Decrease injection speed • Increase gate size • Perform short shots to determine fill pattern and verify proper vent location • Add vents and/or false ejector pin • Move gate location Warp Excessive orientation Mold design • Increase cooling time • Increase melt temperature • Decrease injection pressure and injection speed • Increase number of gates Sticking in Mold Cavities are overpacked Mold design Part is too hot • Decrease injection speed and pressure • Decrease pack and hold pressure • Decrease nozzle and barrel temperatures • Decrease mold temperature • Increase cooling time • Increase draft angle • Decrease nozzle and barrel temperatures • Decrease mold temperature • Increase cooling time TROUBLESHOOTING RECOMMENDATIONS Note: These are general processing conditions.
https://www.avient.com/sites/default/files/2020-10/2020-gravi-tech-processing-guide.pdf
Increase vent width and locations 4.
Increase/Decrease mold temperature Gate Size/Location 1.
Change gate location Voids Insufficient packing pressure 1.
https://www.avient.com/sites/default/files/2020-10/tpe-injection-molding-guide.pdf
The gate location is equally important.
They are located along the tool parting line.
Locating the gate at the top of the part minimizes this problem.
https://www.avient.com/sites/default/files/2024-10/Avient CDP Climate Change %26 Water Submission 20241001.pdf
Fixed row] (2.3) Have you identified priority locations across your value chain?
2.3.1) Identification of priority locations Select from: ☑ Yes, we have identified priority locations (2.3.2) Value chain stages where priority locations have been identified Select all that apply ☑ Direct operations (2.3.3) Types of priority locations identified Sensitive locations ☑ Areas important for biodiversity ☑ Areas of limited water availability, flooding, and/or poor quality of water (2.3.4) Description of process to identify priority locations Avient uses the WRI Aqueduct tool and WWF Biodiversity tool to identify sites with high water and biodiversity risks (2.3.5) Will you be disclosing a list/spatial map of priority locations?
Select all that apply ☑ No [Fixed row] (7.3) Describe your organization’s approach to reporting Scope 2 emissions. 148 Scope 2, location-based Scope 2, market-based Comment Select from: ☑ We are reporting a Scope 2, location-based figure Select from: ☑ We are reporting a Scope 2, market-based figure We are reporting location and market based emissions; both numbers have been assured.
https://www.avient.com/investor-center/news/polyone-expands-color-portfolio-acquisition-mesa
produces both solid and liquid colorant technologies and operates two facilities located in
https://www.avient.com/investor-center/news/polyone-announces-acquisition-fiber-line
With five manufacturing locations in