https://www.avient.com/sites/default/files/2023-04/Chain Extenders for rPET Fibers in Automotive - Application Snapshot.pdf
CAR COMPONENT MANUFACTURER A C O U S T I C A N D T H E R M A L M A N A G E M E N T S Y S T E M S • High rPET content without loss of tenacity • High volume production • Color options • Offered a chain extender that supports stable spinning and maintains fiber tenacity to help achieve targeted rPET content • Provided technical support for production scale-up • Proposed different color concentrates suitable for application and polymer grade Cesa™ Fiber Additives – chain extenders for recycled polyester (rPET) KEY REQUIREMENTS WHY AVIENT?
https://www.avient.com/sites/default/files/2024-12/Oncolor bio colorant -smartwatch housing -case study snapshot.pdf
FITNESS SMARTWATCH BRAND S M A R T W A T C H H O U S I N G • Reduce carbon footprint at least 30% by using bio-based material • Meet physical properties requirements such as impact strength, UV resistance, and thermal resistance • Provide small lot quantity for various colors • Offered bio-based colorants to support carbon footprint reduction • Maintained over 80% of mechanical properties of materials and passed QSUN & QUV test • Offered supply flexibilities in low volume for a high mix of colors OnColor Bio Colorants KEY REQUIREMENTS WHY AVIENT?
https://www.avient.com/sites/default/files/2024-10/Replacing Aluminum with Long Fiber Thermoplastics _LFT_ Application Bulletin.pdf
This can lead to higher tooling costs for high-volume programs.
However, metals may be preferred for applications with high-temperature requirements or where production volume, assembly steps, or secondary processing needs don’t warrant tooling change or investment in new equipment.
https://www.avient.com/sites/default/files/2021-07/colormatrix-lcx-for-ebm-product-bulletin.pdf
ColorMatrix LCX dispersions are designed to minimize and eliminate screw slip, streaking and specking, all while generating cost-to-color savings through processing efficiencies that include: • Handling efficiency – bulk distribution, individual feed stations • Inventory reduction – less inventory and required floor space • Process efficiency – improved color change times KEY CHARACTERISTICS • Highly concentrated pigment dispersions specifically for EBM processing • Provides dimensional stability by utilizing more resin instead of fillers • Reduces costs through handling and processing efficiencies • Customization available for design and product handling • Can be formulated in combination with a wide selection of additive technologies to meet performance needs MARKETS AND APPLICATIONS ColorMatrix LCX Liquid Dispersions for EBM processing are well suited for the following: • Monolayer applications • LDR less than 3% • Large volume whites and blacks • Tints 1.844.4AVIENT www.avient.com Copyright © 2021, Avient Corporation.
https://www.avient.com/sites/default/files/resources/Investor%2520Day%2520-%2520May%25202012%2520-%2520Commercial%2520Excellence.pdf
Kahler (16) Page 16 • Shifted sales compensation practices to drive value and margin expansion • Significantly upgraded and added sales, marketing, and From Volume to Value $2,622 $3,060 Sales ($ millions) 2006 2011PFadded sales, marketing, and technical resources • Expanded global cross-selling • Invested in training and tools 2006 2011PF 3.3% 6.8% 2006 2011PF Adjusted OI% ($ millions) 2006 2011PF 2006 2011PF Page 17 • Value pricing practices enabled by use of EVE tools • Shifting the basis of competition to specialization 1.5% 8.9% 2006 2011PF Specialty OI% Specialization Drives Margin Expansion 2006 2011PF 7.2% PPS OI% competition to specialization differentiates PolyOne as a value-added solutions provider • Redirecting our technology and marketing focus to the most attractive segments 2.6% 5.6% 2006 2011 POD OI% 5.5% 7.2% 2006 2011 2006 2011 2006 2011 Page 18 • Global key account management team focused on key markets and strategic OEMs • Drive growth in target markets through application development750 1,120 Total Commercial Employees 2007 – 2011 49% Increase Commercial Excellence – Recent Investments *Includes ColorMatrix through application development • Leverage breadth of solutions across all PolyOne platforms to identify innovative solutions for strategic OEMs and Tier 1 partners * 750 2007 2011 Sales Marketing R&D/Tech Page 19 5% 1% 0% 27% 2% 12% 4% Performance Dashboards Drive Execution 45% 26% 18% 5% 55% Page 20 53% Drivers of Customer Loyalty Customer Experience is Key to Customer Loyalty 53% Building Customer Loyalty n = 4,960 B2B customers of 24 companies Source: Corporate Executive Board Company and Brand Impact Product and Service Delivery Value-to- Price Ratio Customer Experience 19% 9% 9% 19% 19% 9% Page 21 • Continue to redirect our focus to more attractive segments and increase customer loyalty and retention • Leverage new commercial tools and investments to enable disciplined execution and accountability Critical Imperatives to enable disciplined execution and accountability • Position PolyOne as the differentiated value-added specialty solutions provider Drive improved mix in all segments and achieve margin and profitability growth Page 22 Page 23
https://www.avient.com/sites/default/files/2020-09/edgetek-processing-guide.pdf
PROBLEM CAUSE SOLUTION Excessive Shrink Too much orientation • Increase packing time and pressure • Increase hold pressure • Decrease melt temperature • Decrease mold temperature • Decrease injection speed • Decrease screw rpm • Increase venting • Increase cooling time Not Enough Shrink Too little orientation • Decrease packing pressure and time • Decrease hold pressure • Increase melt temperature • Increase mold temperature • Increase injection speed • Increase screw rpm • Decrease cooling time Burning Melt and/or mold temperature too hot Mold design Moisture • Decrease nozzle and barrel temperatures • Decrease mold temperature • Decrease injection speed • Clean, widen and increase number of vents • Increase gate size or number of gates • Verify material is dried at proper conditions Nozzle Drool Nozzle temperature too hot • Decrease nozzle temperature • Decrease back pressure • Increase screw decompression • Verify material has been dried at proper conditions Weld Lines Melt front temperatures too low Mold design • Increase pack and hold pressure • Increase melt temperature • Increase vent width and locations • Increase injection speed • Increase mold temperature • Decrease injection speed • Increase gate size • Perform short shots to determine fill pattern and verify proper vent location • Add vents and/or false ejector pin • Move gate location Warp Excessive orientation Mold design • Increase cooling time • Increase melt temperature • Decrease injection pressure and injection speed • Increase number of gates Sticking in Mold Cavities are overpacked Mold design Part is too hot • Decrease injection speed and pressure • Decrease pack and hold pressure • Decrease nozzle and barrel temperatures • Decrease mold temperature • Increase cooling time • Increase draft angle • Decrease nozzle and barrel temperatures • Decrease mold temperature • Increase cooling time TROUBLESHOOTING RECOMMENDATIONS PROBLEM CAUSE SOLUTION Incomplete Fill Melt and/or mold temperature too cold Mold design Shot Size • Increase nozzle and barrel temperatures • Increase mold temperature • Increase injection speed • Increase pack and hold pressure • Increase nozzle tip diameter • Check thermocouples and heater bands • Enlarge or widen vents and increase number of vents • Check that vents are unplugged • Check that gates are unplugged • Enlarge gates and/or runners • Perform short shots to determine fill pattern and verify proper vent location • Increase wall thickness to move gas trap to parting line • Increase shot size • Increase cushion Brittleness Melt temperature too low Degraded/Overheated material Gate location and/or size • Increase melt temperature • Increase injection speed • Measure melt temperature with pyrometer • Decrease melt temperature • Decrease back pressure • Use smaller barrel/excessive residence time • Relocate gate to nonstress area • Increase gate size to allow higher flow speed and lower molded-in stress Fibers on Surface (Splay) Melt temperature too low Insufficient packing • Increase melt temperature • Increase mold temperature • Increase injection speed • Increase pack and hold pressure, and time • Increase shot size • Increase gate size Sink Marks Part geometry too thick Melt temperature too hot Insufficient material volume • Reduce wall thickness • Reduce rib thickness • Decrease nozzle and barrel temperatures • Decrease mold temperature • Increase shot size • Increase injection rate • Increase packing pressure • Increase gate size Flash Injection pressure too high Excess material volume Melt and/or mold temperature too hot • Decrease injection pressure • Increase clamp pressure • Decrease injection speed • Increase transfer position • Decrease pack pressure • Decrease shot size • Decrease injection speed • Decrease nozzle and barrel temperatures • Decrease mold temperature • Decrease screw speed TROUBLESHOOTING RECOMMENDATIONS www.avient.com Copyright © 2020, Avient Corporation.
https://www.avient.com/sites/default/files/2020-09/lubrione-processing-guide.pdf
PROBLEM CAUSE SOLUTION Incomplete Fill Melt and/or mold temperature too cold Mold design Shot Size • Increase nozzle and barrel temperatures • Increase mold temperature • Increase injection speed • Increase pack and hold pressure • Increase nozzle tip diameter • Check thermocouples and heater bands • Enlarge or widen vents and increase number of vents • Check that vents are unplugged • Check that gates are unplugged • Enlarge gates and/or runners • Perform short shots to determine fill pattern and verify proper vent location • Increase wall thickness to move gas trap to parting line • Increase shot size • Increase cushion Brittleness Melt temperature too low Degraded/Overheated material Gate location and/or size • Increase melt temperature • Increase injection speed • Measure melt temperature with pyrometer • Decrease melt temperature • Decrease back pressure • Use smaller barrel/excessive residence time • Relocate gate to nonstress area • Increase gate size to allow higher flow speed and lower molded-in stress Fibers on Surface (Splay) Melt temperature too low Insufficient packing • Increase melt temperature • Increase mold temperature • Increase injection speed • Increase pack and hold pressure, and time • Increase shot size • Increase gate size Sink Marks Part geometry too thick Melt temperature too hot Insufficient material volume • Reduce wall thickness • Reduce rib thickness • Decrease nozzle and barrel temperatures • Decrease mold temperature • Increase shot size • Increase injection rate • Increase packing pressure • Increase gate size Flash Injection pressure too high Excess material volume Melt and/or mold temperature too hot • Decrease injection pressure • Increase clamp pressure • Decrease injection speed • Increase transfer position • Decrease pack pressure • Decrease shot size • Decrease injection speed • Decrease nozzle and barrel temperatures • Decrease mold temperature • Decrease screw speed TROUBLESHOOTING RECOMMENDATIONS PROBLEM CAUSE SOLUTION Excessive Shrink Too much orientation • Increase packing time and pressure • Increase hold pressure • Decrease melt temperature • Decrease mold temperature • Decrease injection speed • Decrease screw rpm • Increase venting • Increase cooling time Not Enough Shrink Too little orientation • Decrease packing pressure and time • Decrease hold pressure • Increase melt temperature • Increase mold temperature • Increase injection speed • Increase screw rpm • Decrease cooling time Burning Melt and/or mold temperature too hot Mold design Moisture • Decrease nozzle and barrel temperatures • Decrease mold temperature • Decrease injection speed • Clean, widen and increase number of vents • Increase gate size or number of gates • Verify material is dried at proper conditions Nozzle Drool Nozzle temperature too hot • Decrease nozzle temperature • Decrease back pressure • Increase screw decompression • Verify material has been dried at proper conditions Weld Lines Melt front temperatures too low Mold design • Increase pack and hold pressure • Increase melt temperature • Increase vent width and locations • Increase injection speed • Increase mold temperature • Decrease injection speed • Increase gate size • Perform short shots to determine fill pattern and verify proper vent location • Add vents and/or false ejector pin • Move gate location Warp Excessive orientation Mold design • Increase cooling time • Increase melt temperature • Decrease injection pressure and injection speed • Increase number of gates Sticking in Mold Cavities are overpacked Mold design Part is too hot • Decrease injection speed and pressure • Decrease pack and hold pressure • Decrease nozzle and barrel temperatures • Decrease mold temperature • Increase cooling time • Increase draft angle • Decrease nozzle and barrel temperatures • Decrease mold temperature • Increase cooling time TROUBLESHOOTING RECOMMENDATIONS Note: These are general processing conditions.
https://www.avient.com/sites/default/files/2020-12/artisan-thermoplastics-nylon-processing-guide.pdf
Sink Marks Melt too hot • Decrease nozzle and barrel temperatures • Decrease mold temperature Insufficient material volume • Adjust transfer position • Increase shot size • Increase injection rate • Increase packing pressure Part geometry too thick • Reduce wall thickness • Reduce rib thickness Processing Guide 5 Troubleshooting Recommendations Problem Cause Solution Flash Injection pressure too high • Decrease injection pressure • Increase clamp pressure • Decrease injection rate • Increase transfer position Excess material volume • Adjust transfer position • Decrease pack pressure • Decrease shot size • Decrease injection rate Melt or mold too hot • Decrease nozzle and barrel temperatures • Decrease mold temperature Loose clamp • Reset mold height • Increase clamp tonnage Shrink Too much shrink • Increase cooling time • Decrease mold temperature Too little shrink • Decrease cooling time • Increase mold temperature Burning Process related • Decrease nozzle and barrel temperatures • Decrease mold temperature • Decrease injection rate • Reduce decompression Mold design • Clean, widen and increase number of vents • Increase gate size to reduce shear Wet material • Verify material is dried at proper condition Nozzle Drool Nozzle temperature too hot • Decrease nozzle temperature • Decrease back pressure • Increase screw decompression • Verify material has been dried at proper conditions Incorrect nozzle • Use reverse taper tip Weld Lines Melt front temperatures are too low • Increase injection rate • Increase pack and hold pressure • Increase melt temperature • Increase mold temperature Mold design • Increase gate size • Identify end of fill pattern and verify proper vent location • Add vents or increase vent width • Move gate location 6 Artisan Pre-Colored Thermoplastics Problem Cause Solution Warp Process related • Increase melt temp • Reduce injection speed • Increase pack pressure • Increase pack time • Decrease mold temperature • Increase cool time Mold design • Non-uniform mold cooling Part design • Non-uniform wall thickness Thermolator incorrect temperature • Check settings • Inspect thermocouple Sticking in Mold Overfilled cavity • Decrease injection rate and pressure • Decrease hold pressure • Adjust transfer position • Decrease nozzle and barrel temperatures • Decrease mold temperature • Decrease cooling time Part too hot • Decrease barrel temperature • Decrease mold temperature • Increase cooling time Mold design • Increase draft angle • Polish cores in direction of ejection Black Specks Contamination • Purge machine Degradation • Reduce melt temperature • Reduce screw speed • Reduce back pressure Machine related • Check for wear on screw, barrel or check ring Delamination Process related • Increase melt temperature • Decrease injection speed • Purge barrel to eliminate material contamination Mold design • Reduce sharp corners in material flow path • Increase venting Troubleshooting Recommendations Processing Guide 7 Troubleshooting Recommendations Problem Cause Solution Discoloration Oversheared material • Decrease melt temperature • Decrease injection speed • Reduce residence time Mold design • Increase gate sizing Dry material • Check moisture of material to ensure it is within the recommended moisture percentage for molding 1.844.4AVIENT www.avient.com Copyright © 2020, Avient Corporation.
https://www.avient.com/sites/default/files/2021-11/artisan-ar7300-pre-colored-formulation-processing-guide.pdf
Sink Marks Melt too hot • Decrease nozzle and barrel temperatures • Decrease mold temperature Insufficient material volume • Adjust transfer position • Increase shot size • Increase injection rate • Increase packing pressure Part geometry too thick • Reduce wall thickness • Reduce rib thickness TROUBLESHOOTING RECOMMENDATIONS PROBLEM CAUSE SOLUTION Flash Injection pressure too high • Decrease injection pressure • Increase clamp pressure • Decrease injection rate • Increase transfer position Excess material volume • Adjust transfer position • Decrease pack pressure • Decrease shot size • Decrease injection rate Melt and/or mold temperature too hot • Decrease nozzle and barrel temperatures • Decrease mold temperature Loose clamp • Reset mold height • Increase clamp tonnage Shrink Too much shrink • Increase cooling time • Decrease mold temperature Too little shrink • Decrease cooling time • Increase mold temperature Burning Process related • Decrease nozzle and barrel temperatures • Decrease mold temperature • Decrease injection rate • Reduce decompression Mold design • Clean, widen and increase number of vents • Increase gate size to reduce shear Wet material • Verify material is dried at proper condition Nozzle Drool Nozzle temperature too hot • Decrease nozzle temperature • Decrease back pressure • Increase screw decompression • Verify material has been dried at proper conditions Incorrect nozzle • Use reverse taper tip Weld Lines Melt front temperatures are too low • Increase injection rate • Increase pack and hold pressure • Increase melt temperature • Increase mold temperature Mold design • Increase gate size • Identify end of fill pattern and verify proper vent location • Add vents or increase vent width • Move gate location TROUBLESHOOTING RECOMMENDATIONS PROBLEM CAUSE SOLUTION Warp Process related • Increase melt temperature • Reduce injection speed • Increase pack pressure • Increase pack time • Decrease mold temperature • Increase cool time Mold design • Non-uniform mold cooling Part design • Non-uniform wall thickness Thermolator incorrect temperature • Check settings • Inspect thermocouple Sticking in Mold Overfilled cavity • Decrease injection rate and pressure • Decrease hold pressure • Adjust transfer position • Decrease nozzle and barrel temperatures • Decrease mold temperature • Decrease cooling time Part too hot • Decrease barrel temperature • Decrease mold temperature • Increase cooling time Mold design • Increase draft angle • Polish cores in direction of ejection Black Specks Contamination • Purge machine Degradation • Reduce melt temperature • Reduce screw speed • Reduce back pressure Machine related • Check for wear on screw, barrel or check ring Delamination Process related • Increase melt temperature • Decrease injection speed • Purge barrel to eliminate material contamination Mold design • Reduce sharp corners in material flow path • Increase venting TROUBLESHOOTING RECOMMENDATIONS PROBLEM CAUSE SOLUTION Discoloration Oversheared material • Decrease melt temperature • Decrease injection speed • Reduce residence time Mold design • Increase gate sizing Dry material • Check moisture of material to ensure it is within the recommended moisture percentage for molding TROUBLESHOOTING RECOMMENDATIONS 1.844.4AVIENT www.avient.com Copyright © 2021, Avient Corporation.
https://www.avient.com/sites/default/files/2024-03/Nymax _ Nymax REC Processing Guide.pdf
Degraded/ overheated material • Decrease melt temperature • Decrease back pressure • Use smaller barrel • Decrease injection speed Gate location and/or size • Relocate gate to nonstress area • Increase gate size to allow higher flow rate and lower molded in stress Fibers/Minerals on Surface or Uneven Surface Appearance Melt temperature too low • Increase melt temperature • Increase mold temperature • Increase injection speed Insufficient packing • Increase hold pressure and time • Increase shot size Processing Guide 5 Problem Cause Solution Sink Marks Part geometry too thick • Reduce wall thickness • Reduce rib thickness Melt too hot • Decrease nozzle and barrel temperatures • Decrease mold temperature Insufficient material volume • Increase shot size • Increase injection rate • Increase packing pressure • Increase gate size Flash Injection pressure too high • Decrease injection pressure • Increase clamp pressure • Decrease injection rate • Increase transfer position Excess material volume • Adjust transfer position • Decrease pack pressure • Decrease shot size • Decrease injection rate Melt and/or mold too hot • Decrease nozzle and barrel temperatures • Decrease mold temperature • Decrease screw speed Loose clamp • Reset mold height • Increase clamp tonnage Shrink Too much shrink • Increase cooling time • Decrease mold temperature Too little shrink • Decrease cooling time • Increase mold temperature Troubleshooting Recommendations 6 Nymax Polymer Formulations Troubleshooting Recommendations Problem Cause Solution Burning Process related • Decrease nozzle and barrel temperatures • Decrease mold temperature • Decrease injection rate Mold design • Clean, widen and increase number of vents • Increase gate size to reduce shear Wet material • Check moisture.