https://www.avient.com/sites/default/files/2020-09/lubrione-processing-guide.pdf
BASE RESIN PPA PC PSU PES PPS CO- POLYMER ACETAL PEEK PA Barrel Temperatures* °F (°C) Rear Zone 550–580 (288–305) 520–560 (271–293) 600–640 (316–338) 630–660 (332–338) 550–580 (288–304) 350–370 (177–188) 660–700 (349–371) 440–490 (227–254) Center Zone 560–600 (293–316) 530–570 (277–299) 620–670 (327–354) 650–680 (343–360) 560–615 (293–324) 380–390 (193–200) 700–730 (371–388) 470–510 (243–266) Front Zone 580–620 (304–327) 550–580 (288–305) 630–680 (332–360) 670–730 (354–388) 590–630 (310–332) 390–430 (200–221) 720–750 (382–400) 490–540 (254–282) Nozzle 575–615 (302–324) 550–600 (288–316) 630–680 (332–360) 680–700 (360–371) 600–625 (316–330) 380–415 (193–213) 720–750 (382–400) 520–570 (271–300) Melt Temperature 575–615 (302–324) 560–600 (293–316) 625–675 (330–358) 650–710 (343–377) 600–625 (316–330) 370–410 (188–210) 670–740 (354–393) 520–570 (271–300) Mold Temperature 250–300 (121–150) 175–240 (80–116) 190–300 (88–150) 225–325 (107–164) 250–325 (121–164) 150–225 (66–107) 290–375 (143–190) 150–200 (66–93) Pack & Hold Pressure 50%–75% of Injection Pressure Injection Velocity in/s 1.0–3.0 Back Pressure psi 50 Screw Speed rpm 50–90 Drying Parameters °F (°C) 6 hrs @ 175 (80) 4 hrs @ 250 (121) 4 hrs @ 275 (135) 4 hrs @ 300 (150) 4 hrs @ 250 (121) 2 hrs @ 200 (93) 3 hrs @ 300 (150) 4 hrs @ 180 (82) Allowable Moisture % < 0.05 < 0.02 < 0.02 < 0.04 < 0.02 0.15–0.20 < 0.02 0.10–0.20 Cushion in 0.125–0.250 Screw Compression Ratio 2.5:1–3.5:1 2.0:1–2.5:1 2.5:1–3.5:1 2.5:1–3.5:1 2.5:1–3.5:1 2.5:1–3.5:1 2.5:1–3.5:1 2.5:1–3.5:1 Nozzle Type General Purpose General Purpose General Purpose General Purpose General Purpose General Purpose General Purpose Reverse Taper Clamp Pressure 5–6 Tons/in2 of projected area of cavities and runner system * Barrel temperatures should be elevated for compounds designed for electrical insulative properties.
Venting • Place vents at the end of fill and anywhere potential knit/weld lines will occur. • All vents need to be vented to atmosphere. • For circular parts, full perimeter venting is recommended. • Cut vent depths to: - PPA Compounds: 0.0015"–0.0025" depth and 0.250" width - PC Compounds: 0.002"–0.004" depth and 0.250" width - PSU Compounds: 0.003"–0.004" depth and 0.250" width - PES Compounds: 0.003"–0.004" depth and 0.250" width - PPS Compounds: 0.002"–0.003" depth and 0.250" width - Acetal Compounds: 0.0015" minimum depth and 0.250" width - PEEK Compounds: 0.002"–0.004" depth and 0.250" width - Nylon Compounds: 0.002" minimum depth and 0.250" width • Increase vent depth to 0.060" (1.5mm) at 0.250" (4.0mm) away from the cavity and vent to atmosphere.
PROBLEM CAUSE SOLUTION Incomplete Fill Melt and/or mold temperature too cold Mold design Shot Size • Increase nozzle and barrel temperatures • Increase mold temperature • Increase injection speed • Increase pack and hold pressure • Increase nozzle tip diameter • Check thermocouples and heater bands • Enlarge or widen vents and increase number of vents • Check that vents are unplugged • Check that gates are unplugged • Enlarge gates and/or runners • Perform short shots to determine fill pattern and verify proper vent location • Increase wall thickness to move gas trap to parting line • Increase shot size • Increase cushion Brittleness Melt temperature too low Degraded/Overheated material Gate location and/or size • Increase melt temperature • Increase injection speed • Measure melt temperature with pyrometer • Decrease melt temperature • Decrease back pressure • Use smaller barrel/excessive residence time • Relocate gate to nonstress area • Increase gate size to allow higher flow speed and lower molded-in stress Fibers on Surface (Splay) Melt temperature too low Insufficient packing • Increase melt temperature • Increase mold temperature • Increase injection speed • Increase pack and hold pressure, and time • Increase shot size • Increase gate size Sink Marks Part geometry too thick Melt temperature too hot Insufficient material volume • Reduce wall thickness • Reduce rib thickness • Decrease nozzle and barrel temperatures • Decrease mold temperature • Increase shot size • Increase injection rate • Increase packing pressure • Increase gate size Flash Injection pressure too high Excess material volume Melt and/or mold temperature too hot • Decrease injection pressure • Increase clamp pressure • Decrease injection speed • Increase transfer position • Decrease pack pressure • Decrease shot size • Decrease injection speed • Decrease nozzle and barrel temperatures • Decrease mold temperature • Decrease screw speed TROUBLESHOOTING RECOMMENDATIONS PROBLEM CAUSE SOLUTION Excessive Shrink Too much orientation • Increase packing time and pressure • Increase hold pressure • Decrease melt temperature • Decrease mold temperature • Decrease injection speed • Decrease screw rpm • Increase venting • Increase cooling time Not Enough Shrink Too little orientation • Decrease packing pressure and time • Decrease hold pressure • Increase melt temperature • Increase mold temperature • Increase injection speed • Increase screw rpm • Decrease cooling time Burning Melt and/or mold temperature too hot Mold design Moisture • Decrease nozzle and barrel temperatures • Decrease mold temperature • Decrease injection speed • Clean, widen and increase number of vents • Increase gate size or number of gates • Verify material is dried at proper conditions Nozzle Drool Nozzle temperature too hot • Decrease nozzle temperature • Decrease back pressure • Increase screw decompression • Verify material has been dried at proper conditions Weld Lines Melt front temperatures too low Mold design • Increase pack and hold pressure • Increase melt temperature • Increase vent width and locations • Increase injection speed • Increase mold temperature • Decrease injection speed • Increase gate size • Perform short shots to determine fill pattern and verify proper vent location • Add vents and/or false ejector pin • Move gate location Warp Excessive orientation Mold design • Increase cooling time • Increase melt temperature • Decrease injection pressure and injection speed • Increase number of gates Sticking in Mold Cavities are overpacked Mold design Part is too hot • Decrease injection speed and pressure • Decrease pack and hold pressure • Decrease nozzle and barrel temperatures • Decrease mold temperature • Increase cooling time • Increase draft angle • Decrease nozzle and barrel temperatures • Decrease mold temperature • Increase cooling time TROUBLESHOOTING RECOMMENDATIONS Note: These are general processing conditions.
https://www.avient.com/sites/default/files/2023-01/Hydrocerol Chemical Foaming Agents for Injection Molding Technical Bulletin.pdf
INJECTION RATE The mold cavity needs to be filled at high speed to maintain a high pressure until the end-of-fill and ensure that the dispersed gas bubbles create the necessary expansion after the pressure drop at the end of the injection process.
The sliding back of the mold cavity at the end of fill allows a greater pressure drop and herewith more expansion.
Once the cavity is filled, the mold opens, or one of the sides has a slide, to allow the expansion of the gas-loaded compound.
https://www.avient.com/sites/default/files/2023-11/Capture Oxygen Scavenger Product Bulletin.pdf
KEY CHARACTERISTICS • Extends product shelf life and reduces waste • Maintains clarity and aesthetics of the bottle while keeping contents fresh • Located in the closure, eliminating the need to add a scavenger to the container wall • Allows unlimited design freedom, including lightweighting • Has achieved APR Critical Guidance Recognition • Allows up to 100% rPET usage • Does not negatively impact the PET or polyolefin recycle streams PRODUCT BULLETIN PROCESSING PARTICULARS Capture is designed to work with 1-piece HDPE and PP plug seal closures.
The technology can be used with PET or rPET bottles and is suitable for both hot-fill and aseptic filling operations.
https://www.avient.com/sites/default/files/2020-09/stat-tech-tri-fold-processing-guide.pdf
Base Resin PC PC/PSU PES PEI PP ABS PEEK PA Barrel Temperatures* °F (°C) Rear Zone 530–560 (277–293) 550–575 (288–302) 660–700 (349–371) 675–725 (357–385) 390–420 (199–216) 425–460 (219–238) 680–730 (360–388) 430–500 (221–260) Center Zone 515–560 (269–288) 540–565 (282–296) 650–690 (343–366) 655–710 (352–377) 380–405 (193–207) 415–450 (213–232) 670–710 (354–377) 420–490 (216–254) Front Zone 510–525 (266–274) 530–555 (277–291) 640–680 (338–360) 655–700 (346–371) 370–395 (188–202) 405–440 (207–227) 650–690 (343–366) 410–480 (210–249) Nozzle 520–535 (271–280) 540–565 (282–296) 650–690 (343–366) 665–710 (352–377) 380–400 (193–204) 415–450 (213–232) 660–700 (349–371) 420–490 (216–254) Melt Temperature 525–560 (274–293) 530–580 (277–304) 650–700 (343–371) 660–730 (349–388) 375–395 (191–202) 410–460 (210–238) 650–730 (343–388) 420–500 (216–260) Mold Temperature 175–250 (80–121) 160–220 (71–104) 280–350 (138–177) 275–350 (135–177) 100–135 (38–57) 150–180 (66–82) 300–425 (149–219) 160–230 (71–110) Pack & Hold Pressure 50%–75% of Injection Pressure Injection Velocity in/s 0.5–2.0 Back Pressure psi 50 Screw Speed rpm 40–70 40–70 40–70 40–70 40–70 40–70 40–70 40–70** Drying Parameters °F (°C) 6 hrs @ 250 (121) 4 hrs @ 250 (121) 4 hrs @ 275 (135) 4 hrs @ 250 (121) 3 hrs @ 300 (150) 2 hrs @ 200 (93) 3 hrs @ 275 (135) 4 hrs @ 180 (82) Cushion in 0.125–0.250 Screw Compression Ratio 2.0:1–2.5:1 2.0:1–2.5:1 2.5:1–3.5:1 2.5:1–3.5:1 2.5:1–3.5:1 2.5:1–3.5:1 2.5:1–3.5:1 2.5:1–3.5:1 Nozzle Type General Purpose General Purpose General Purpose General Purpose General Purpose General Purpose General Purpose Reverse Taper Clamp Pressure 5–6 Tons/in2 * A reverse temperature profile is important to obtain optimum conductive properties.
Venting • Place vents at the end of fill and anywhere potential knit/weld lines will occur. • All vents need to be vented to atmosphere. • For circular parts, full perimeter venting is recommended. • Cut vent depths to: - PC Compounds: 0.001"–0.002" depth and 0.250" width - PC/PSU Compounds: 0.002"–0.003" depth and 0.250" width - PES Compounds: 0.003"–0.004" depth and 0.250" width - PEI Compounds: 0.001"–0.003" depth and 0.250" width - PP Compounds: 0.001"–0.002" depth and 0.250" width - ABS Compounds: 0.0015"–0.0025" depth and 0.250" width - PEEK Compounds: 0.002"–0.004" depth and 0.250" width - Nylon Compounds: 0.002" min. depth and 0.250" width • Increase vent depth to 0.040" (1.0mm) at 0.250" (4.0mm) away from the cavity and vent to atmosphere.
PROBLEM CAUSE SOLUTION Incomplete Fill Melt and/or mold temperature too cold Mold design Shot Size • Increase nozzle and barrel temperatures • Increase mold temperature • Increase injection speed • Increase pack and hold pressure • Increase nozzle tip diameter • Check thermocouples and heater bands • Enlarge or widen vents and increase number of vents • Check that vents are unplugged • Check that gates are unplugged • Enlarge gates and/or runners • Perform short shots to determine fill pattern and verify proper vent location • Increase wall thickness to move gas trap to parting line • Increase shot size • Increase cushion Brittleness Melt temperature too low Degraded/Overheated material Gate location and/or size • Increase melt temperature • Increase injection speed • Measure melt temperature with pyrometer • Decrease melt temperature • Decrease back pressure • Use smaller barrel/excessive residence time • Relocate gate to nonstress area • Increase gate size to allow higher flow speed and lower molded-in stress Fibers on Surface (Splay) Melt temperature too low Insufficient packing • Increase melt temperature • Increase mold temperature • Increase injection speed • Increase pack and hold pressure, and time • Increase shot size • Increase gate size Sink Marks Part geometry too thick Melt temperature too hot Insufficient material volume • Reduce wall thickness • Reduce rib thickness • Decrease nozzle and barrel temperatures • Decrease mold temperature • Increase shot size • Increase injection rate • Increase packing pressure • Increase gate size Flash Injection pressure too high Excess material volume Melt and/or mold temperature too hot • Decrease injection pressure • Increase clamp pressure • Decrease injection speed • Increase transfer position • Decrease pack pressure • Decrease shot size • Decrease injection speed • Decrease nozzle and barrel temperatures • Decrease mold temperature • Decrease screw speed TROUBLESHOOTING RECOMMENDATIONS PROBLEM CAUSE SOLUTION Excessive Shrink Too much orientation • Increase packing time and pressure • Increase hold pressure • Decrease melt temperature • Decrease mold temperature • Decrease injection speed • Decrease screw rpm • Increase venting • Increase cooling time Not Enough Shrink Too little orientation • Decrease packing pressure and time • Decrease hold pressure • Increase melt temperature • Increase mold temperature • Increase injection speed • Increase screw rpm • Decrease cooling time Burning Melt and/or mold temperature too hot Mold design Moisture • Decrease nozzle and barrel temperatures • Decrease mold temperature • Decrease injection speed • Clean, widen and increase number of vents • Increase gate size or number of gates • Verify material is dried at proper conditions Nozzle Drool Nozzle temperature too hot • Decrease nozzle temperature • Decrease back pressure • Increase screw decompression • Verify material has been dried at proper conditions Weld Lines Melt front temperatures too low Mold design • Increase pack and hold pressure • Increase melt temperature • Increase vent width and locations • Increase injection speed • Increase mold temperature • Decrease injection speed • Increase gate size • Perform short shots to determine fill pattern and verify proper vent location • Add vents and/or false ejector pin • Move gate location Warp Excessive orientation Mold design • Increase cooling time • Increase melt temperature • Decrease injection pressure and injection speed • Increase number of gates Sticking in Mold Cavities are overpacked Mold design Part is too hot • Decrease injection speed and pressure • Decrease pack and hold pressure • Decrease nozzle and barrel temperatures • Decrease mold temperature • Increase cooling time • Increase draft angle • Decrease nozzle and barrel temperatures • Decrease mold temperature • Increase cooling time TROUBLESHOOTING RECOMMENDATIONS www.avient.com Copyright © 2020, Avient Corporation.
https://www.avient.com/industries/consumer/consumer-discretionary/home-household/home-improvement
OnColor™ PProTint™ Colorants for Clarified PP
OnForce™ Long Glass Fiber Reinforced Polypropylene Composites
Edgetek™ BIO Natural Filled Formulations
https://www.avient.com/products/long-fiber-technology/benefits-long-fiber-reinforced-thermoplastic-composites
PP
Glass Fiber Reinforced
As reinforcements align in the direction of polymer flow as molds fill, this can lead to anisotropic properties.
https://www.avient.com/sites/default/files/2020-10/luxury-closures-gravi-tech-design-guide-2.0-application-specific.pdf
Without venting, burning and no-fill areas can occur.
The relative shear rate is determined by the fill time.
This pressure is high at the gate area and low at the end of fill.
https://www.avient.com/sites/default/files/2020-10/2020-gravi-tech-processing-guide.pdf
Place vents at the end of fill and anywhere potential knit/weld lines will occur. 2.
Perform short shots to determine fill pattern and verify proper vent location 6.
Perform short shots to determine fill pattern and verify proper vent location 4.
https://www.avient.com/sites/default/files/2020-09/surround-processing-guide-2020.pdf
Furthermore, Surround formulations offer improved performance in the areas of creep and fatigue resistance, dimensional stability, and surface finish when compared to traditional highly-filled, short fiber formulations.
TEMPERATURE Material Rear °F (°C) Center °F (°C) Front °F (°C) Nozzle °F (°C) Melt °F (°C) Mold °F (°C) Nylon 6,6 14% NiCF 540–570 (280–300) 530–560 (275–290) 530–560 (275–290) 540–570 (280–300) 540–570 (280–300) 200–300 (90–150) Nylon 6,6 30% SS 540–570 (280–300) 530–560 (275–290) 530–560 (275–290) 540–570 (280–300) 540–570 (280–300) 200–300 (90–150) PBT 14% NiCF 510–410 (265–280) 490–540 (255–280) 480–530 (250–275) 480–530 (250–275) 480–530 (250–275) 150–250 (65–120) PC 14% NiCF 540–570 (280–300) 540–570 (280–300) 530–560 (275–290) 530–560 (275–290) 530–560 (275–290) 150–250 (65–120) ABS 14% NiCF 470–520 (240–270) 460–520 (240–270) 460–520 (240–270) 460–530 (240–275) 460–530 (240–275) 100–200 (40–90) PP 14% NiCF 440–480 (225–250) 440–480 (225–250) 430–470 (220–245) 420–460 (215–240) 420–460 (215–240) 125–175 (50–80) DRYING Material Temperature °F (°C) Time Minimum Moisture Maximum Moisture Nylon 6,6 14% NiCF 180 (80) 4–5 hours 0.05% 0.20% Nylon 6,6 30% SS 180 (80) 4–5 hours 0.05% 0.20% PBT 14% NiCF 250 (120) 6-8 hours 0.02% 0.03% PC 14% NiCF 250 (120) 3–4 hours 0.02% 0.02% ABS 14% NiCF 200 (90) 2–4 hours 0.05% 0.10% PP 14% NiCF 180 (80) 2–4 hours 0.20% 0.30% Equipment • Feed throats smaller than 2.5" may cause bridging due to pellet size - Larger feed throats will be more advantageous with long fiber EMI shielding resins • General purpose metering screw is recommended - Mixing/barrier screws are not recommended • L/D ratio - 18:1–20:1 (40% feed, 40% transition, 20% metering) • Low compression ratio - 2:1–3:1 • Deep flights recommended - Metering zone 3.5 mm - Feed zone 7.5 mm • Check ring - Three-piece, free-flowing check ring • General purpose nozzle (large nozzle tips are recommended) - Minimum orifice diameter of 7/32" - Tapered nozzles are not recommended for long fiber EMI shielding resins • Clamp tonnage: - 2.5–5 tons/in2 Gates • Large, free-flow gating recommended - 0.25" x 0.125" land length - 0.5" gate depth Runners • Full round gate design • No sharp corners • Minimum of 0.25" diameter • Hot runners can be used PROCESSING Screw Speed Slower screw speeds are recommended to protect fiber length Back Pressure Lower back pressure is recommended to protect fiber length Pack Pressure 60–80% of max injection pressure Hold Pressure 40–60% of max injection pressure Cool Time 10–30 seconds (depends on part geometry and dimensional stability) PROCESS CONSIDERATIONS Recommended – retain fiber length (maximize conductivity) • Low shear process • Low screw speed and screw RPM • Slow Injection speed • Fill to 99–100% on first stage of injection - Reduces potential nesting of fibers at gate location - Improves mechanical performance near gate location - Promotes ideal fiber orientation Resin Rich Surface • Achieved when using a hot mold temperature and longer cure times ≥ Max mold temperature recommendation • Improved surface aesthetic • Reduced surface conductivity • Could reduce attenuation performance in an assembly Fiber Rich Surface • Achieved when using a cold mold temperature and shorter cure times ≤ Minimum mold temperature recommendation • Improved surface aesthetic • Reduced surface conductivity • Could improve attenuation performance in an assembly www.avient.com Copyright © 2020, Avient Corporation.
https://www.avient.com/knowledge-base/article/packaging-jumps-shelf
Custom TPE solutions are available for; cold fill, aseptic, hot fill, pasteurized and retort processing conditions.