HAMMERHEAD[™] MARINE COMPOSITE PANELS

APPLICATION & INSTALLATION GUIDE

PRODUCT DESCRIPTION

Hammerhead[™] Marine Composite Panels are made from continuous glassfiber reinforced thermoplastic face sheets and polyester foam cores. They are engineered to provide **simplified installation, long-lasting components,** and **overall cost reduction** for boat manufacturers.

PERFORMANCE ADVANTAGES

FEATURE	BENEFIT
Exceptional strength-to-weight ratio	Lightweight yet strong structural performance and increased payloads
Resistance to UV light, chemicals, moisture degradation and rot	Resistance to harsh marine conditions
Tough and impact resistant	Durability and long product life
Dimensionally stable	Consistent performance in extreme temperature and humidity fluctuations
Strong adhesive properties	Easy bonding to various materials

MANUFACTURING ADVANTAGES

FEATURE	BENEFIT
Ready-to-install	Fewer parts & reduced scrap
Large format	Improved aesthetics with seamless designs
Made via continuous-fiber manufacturing process	Consistent quality in every panel

USES & APPLICATIONS

Ceilings and Hatches

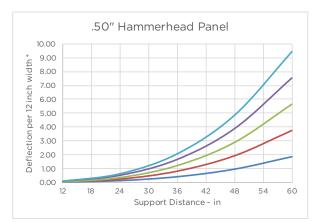
Stringers

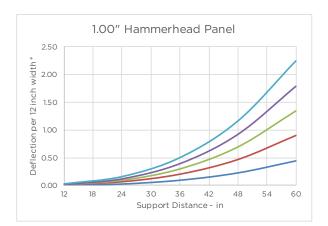
Bulkheads, Decking and Transoms

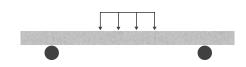
MECHANICAL PERFORMANCE

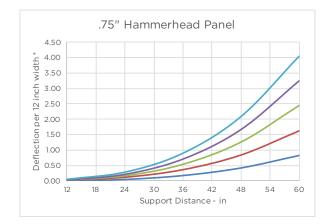
Superior strength-to-weight ratio

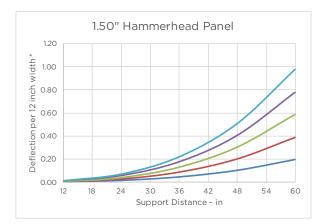
DDODEDTV	TEST	PANEL THICKNESS								
PROPERTY	METHOD	.5	.50"		.75"		1.00"		1.50"	
Core Density (lb/ft³)	ISO 845	5.3	8.4	5.3	8.4	5.3	8.4	5.3	8.4	
Flexural Rigidity (lb-in ²)	ASTM D7249	38,379	39,390	80,699	74,158	147,890	140,081	342,866	363,009	
Panel Weight (lb/ft²)	Calculated	0.93	1.07	1.03	1.25	1.14	1.42	1.35	1.77	
Core Shear Yield (psi)	ASTM C393	60	138	61	139	57	131	52	99	
Max Load (lbs)	ASTM C393	246	482	362	704	423	833	558	1,031	
Core Shear ULT (psi)	ASTM C393	81	159	81	153	70	138	62	113	
Face Bend Stress (psi)	ASTM C393	6,430	12,582	6,355	12,109	5,511	10,860	4,899	8,916	

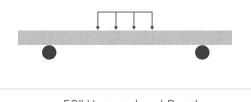

Doors and Cabinetry

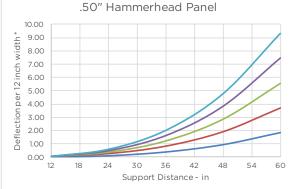

SUPPORT SPAN DEFLECTION

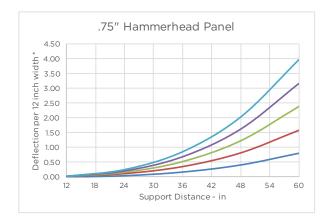

Meets performance required for marine applications

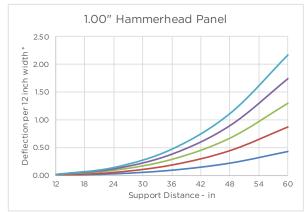

Predictive deflection in various load cases. Deflection is dependent on support span distance.

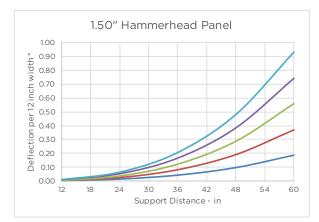

Simply supported beam deflection for Hammerhead[™] panels with 5.3 lb/ft³ core density

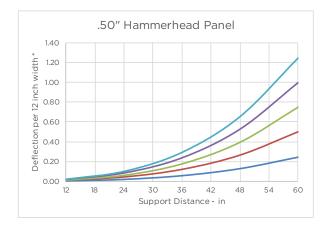


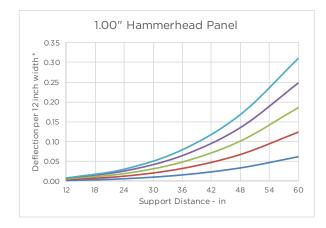


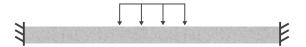

* To calculate deflection for different panel widths, use the following formula: Deflection = Chart value* [12 / panel width]. Example: Deflection for 24 inch panel = Chart value *[12 / 24]

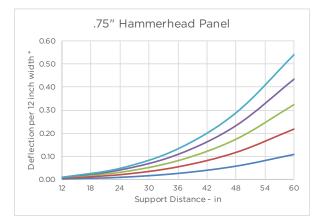


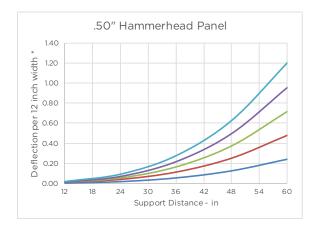

Simply supported beam deflection for Hammerhead[™] panels with 8.4 lb/in³ core density

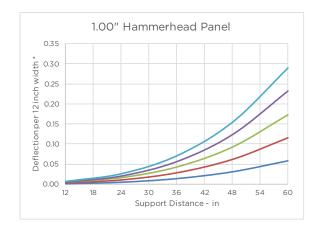



* To calculate deflection for different panel widths, use the following formula: Deflection = Chart value* [12 / panel width]. Example: Deflection for 24 inch panel = Chart value *[12 / 24]

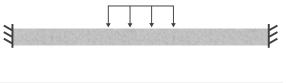

SUPPORT SPAN DEFLECTION (continued)

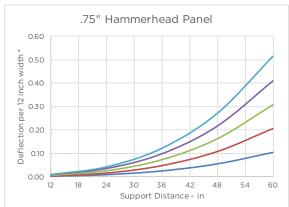

Fixed end beam deflection for Hammerhead[™] panels with 5.3 lb/ft³ core density

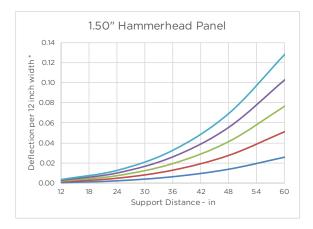




* To calculate deflection for different panel widths, use the following formula: Deflection = Chart value* [12 / panel width]. Example: Deflection for 24 inch panel = Chart value *[12 / 24]

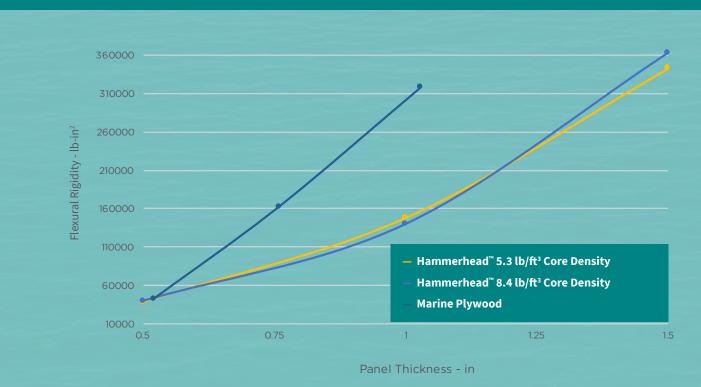

Fixed end beam deflection for Hammerhead[™] panels with 8.4 lb/ft³ core density



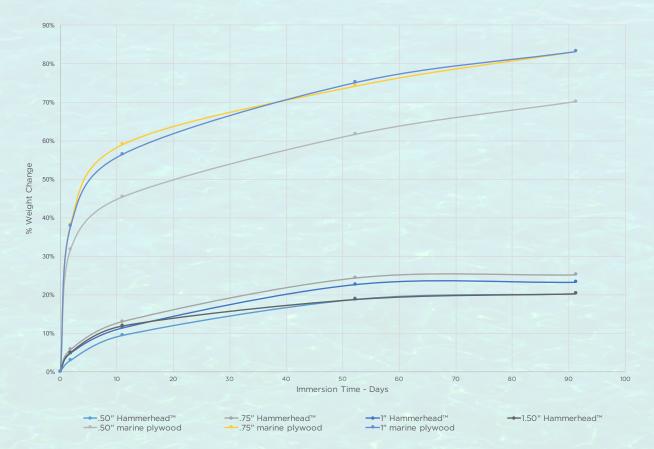


LOAD CASE

— 50lb	<u> </u>	— 150lb	<u> </u>	— 250lb



* To calculate deflection for different panel widths, use the following formula: Deflection = Chart value* [12 / panel width]. Example: Deflection for 24 inch panel = Chart value *[12 / 24]

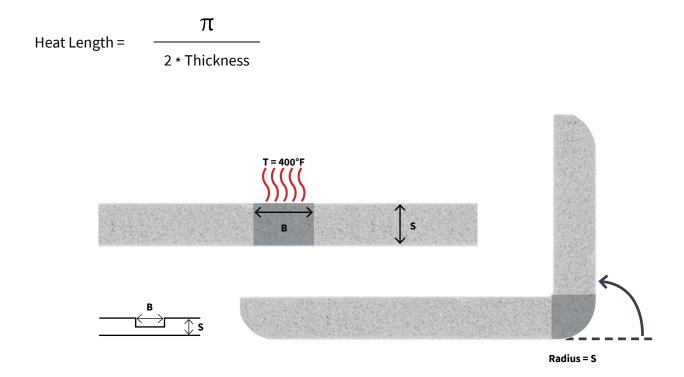

FLEXURAL RIGIDITY COMPARISON BENDING RESISTANCE VS. MARINE PLYWOOD

Hammerhead[™] panels are three times lighter than marine plywood

MOISTURE ABSORPTION

% weight change due to water absorption for selected composites and marine plywood

INSTALLATION INSTRUCTIONS


CUTTING & DRILLING

Recommended blade: Industrial fine cut-off saw blade, 10" x 80 teeth 38° ATB grind with 5/8" bore, PTFE coating

Recommended router bits: 3/8" diameter, 4 flute TiAlN (titanium aluminum nitride) coated carbide bit

FORMING

Apply localized 400° F heat at a length proportional to the panel thickness (see equation below) and bend to shape. Panel will set when cooled.

FINISHING

Gel coat finish is possible with minimal surface preparation. Contact Avient for more information.

TAB TESTING OF VARIOUS INSTALLATION METHODS

GLASS/EPOXY TAB MATERIA

NO TAB

Hammerhead™		
	← PETG Laminate	

L-Bracket Installation

BOTTOM PANEL	LEG LENGTH	BREAK STRENGTH (LBS)	
PETG Skins with Plywood Core	1 in 1.5 in 2 in	2400 2820 2748	
Hammerhead [™] with 5.3 lb/ft³ Core Density	2 in	665	
Hammerhead [™] with 8.4 lb/ft³ Core Density	2 in	1084	
Marine Plywood	2 in	770	
Glass/Epoxy with Plywood Core	2 in	1055	
Glass/Polyester with Balsa Core	2 in	919	

Hammerhead[™]_____

----- PETG Laminate

U-Channel Installation

BOTTOM PANEL	LEG LENGTH	BREAK STRENGTH (LBS)
PETG Skins with Plywood Core	2 in	2375
Marine Plywood	2 in	770
Glass/Polyester with Balsa Core	2 in	797

	Mixed Conditions						
	BOTTOM PANEL	LEG LENGTH	BREAK STRENGTH (LBS)				
	Hammerhead [™] with 5.3 lb/ft³ Core Density	2 in	420				
	Hammerhead [™] with 8.4 lb/ft³ Core Density	2 in	332				
	Marine Plywood	2 in	984				
	Glass/Polyester with Balsa Core	2 in	1298				
	Hammerhead [™] with 5.3 lb/ft ³ Core Density - ITW Plexus MA420 Adhesive	NA	501				
	Hammerhead [™] with 8.4 lb/ft ³ Core Density - ITW Plexus MA420 Adhesive	NA	1156				
	Hammerhead [™] with 8.4 lb/ft ³ Core Density - Crestomer 1152PA Adhesive	NA	1530				
	Hammerhead [™] with 8.4 lb/in ³ Core Density - Crestomer M1-30 Adhesive	NA	1471				

ITW Plexus MA420 adhesive was used in all tab testing installations except where noted.

ADHESIVE SELECTION

ADHESIVE DESCRIPTION	ADHESIVE GRADE	MANUFACTURER	AVERAGE BOND STRENGTH (PSI)	STANDARD DEVIATION	FAILURE MODE		
BEST ADHESION							
2k Urethane	7542 ¹	Lord	2281	184	Substrate Cohesive		
2k Acrylic	SA1-705 GRY ¹	AccraLock	2211	78	Substrate		
2k Acrylic	Plexus MA420	ITW	2171	262	Substrate		
2k Acrylic	SA10-05 Blk ¹	AccraLock	2102	138	Substrate		
2k Urethane	7545 ¹	Lord	2047	68	Cohesive		
2k Acrylic	SA1-705 GRY 1:2	AccraLock	1966	68	Substrate		
2k Acrylic	Scotchweld 8010	3M	1907	61	Adhesive		
Cyanoacrylate	Gorilla Glue	Gorilla Glue	1885	432	Cohesive		
2k Acrylic	Crestabond PP-04	Scott Bader	1873	281	Substrate		
2k Acrylic	SA10-05 Blk 10:2	AccraLock	1779	127	Cohesive		
2k Urethane	7542 ²	Lord	1716	190	Cohesive Adhesive		
2k Urethane	7545 ²	Lord	1535	98	Adhesive		
2k Methacrylate	Polyfuse	lcon Containment	1610	98	Adhesive		
	ADHESION						
2k Acrylic	FA10-05 Blk C010817	AccraLock	724	58	Cohesive		
2k Acrylic	FA10-05 Blk ¹	AccraLock	722	44	Cohesive		
2k Epoxy	Loctite Epoxy Instant Mix	Loctite	508	81	Adhesive		
2k Epoxy	Gorilla Glue Epoxy	Gorilla Glue	341	198	Adhesive		
NOT RECOMMEN	IDED						
2k Epoxy	Loctite Epoxy Marine	Loctite	0	0	No bond		

Brands identified are owned by the manufacturers of the adhesive products.

¹ surface sanded with 220 grit scuff prep ² surface primed with 459T

FASTENER SELECTION

FASTENER TYPE	BENEFITS	CONSIDERATIONS		
Through-Bolting	Best mechanical locking system	Need back side access to panel		1
				_
Screw-In Anchor	Highest pullout strength	Requires pilot hole	Ĩ	
Cup Washer	Spreads compressive load	Requires relief hole; For substructure and hard point attachment		
Wide Grip (Bulb-Style) Rivet	Ease of use—no installation torque limitations	For lower load attachments	~	
Sheet Metal or Wood Screw	Readily available, low cost	Penetrate both skins for improved pullout	- D D	ĨĨ
Shoulder Washer	Limits compressive load	Requires relief hole; For substructure and hard point attachment	-	Ĵ-
- Frank		123 - 22	1	
For more information or for specific applications			Contraction of the second	Set Ja

To learn more about Avient's advanced composite solutions, contact Avient at +1.844.4AVIENT www.avient.com

Copyright © 2020, Avient Corporation. Avient makes no representations, guarantees, or warranties of any kind with respect to the information contained in this document about its accuracy, suitability for particular applications, or the results obtained or obtainable using the information. Some of the information arises from laboratory work with small-scale equipment which may not provide a reliable indication of performance or properties obtained or obtainable on larger-scale equipment. Values reported as "typical" or stated without a range do not state minimum or maximum properties; consult your sales representative for property ranges and min/max specifications. Processing conditions can cause material properties to shift from the values stated in the information. Avient makes no warranties or guarantees respecting suitability of either Avient's products or the information for your process or end-use application. You have the responsibility to conduct full-scale end-product performance testing to determine suitability in your application, and you assume all risk and liability arising from your use of the information and/or use or handling of any product. AVIENT MAKES NO WARRANTIES, EXPRESS OR IMPLED, INCLUDING, BUT NOT LIMITED TO, IMPLED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, either with respect to the information or products reflected by the information. This literature shall NOT operate as permission, recommendation, or inducement to practice any patented invention without permission of the patent owner.